POLYTECHNIQUE /53
MONTREAL -2

Tracing and Performance
Analysis of Modern Distributed
Applications

Progress Report Meeting - May 10, 2018 L oic Gelle

DORSAL
Ecole polytechnique de Montréal Michel Dagenals

Context

The evolution of computer systems

-~

SRETTOTTOTST
BBLOL I3, 110
LINORRRE X OO

D R by
e
MILEBRELVACAG o

B M b s or A
IINFEE R AN A Ay

From bare metal to VMs to Containers

Apps

Libraries

Guest OS Apps Apps

Libraries Hypervisor Libs Libs

0S (ON)
T8\ Hardware $iiardware
i Bare metal T VMg Containers

_ 4

From monoliths to microservices

“The Simple Thing”

Distributed Concurrency
g —a
< —1a
@Qp o

lllustration courtesy of Ben Sigelman

(I; OPENTRACING

Distributed tracing to the rescue

Key facts about OpenTracing

= An open-source specification for distributed tracing

= A vendor-neutral API for instrumenting libraries

API available for popular languages like Java, Go, C++, Python...
Lots of libraries like gRPC, Node|S... are instrumented

= Many tracers (Jaeger, OpenZipkin, LightStep...)
implement the OpenTracing specification

o OpenTracing leaves implementation details to the tracers

Each tracer has different purposes and analyses / Ul

Describing complex transactions

OpenTracing focuses on describing tasks instead of events.

Client
Web app

Check order

r o8
Time

What the transaction looks like What the trace looks like

Adapted from Ben Sigelman 8

Key concepts in OpenTracing

Service 1 Network call Service 2
Span s ?rﬂﬁ”f[ﬁ\
Parent i
m— drent span ._§p_>§r_1 _cc_)r_lt_e_x:c_. rdo B
. SpanB | | | |
" Clhild of A = log log log log
e
-
log log

A span has a name, a start, a duration, tags and attached logs.
= The span context identifies the trace; it is injected into requests.

A trace is the recording of the whole transaction using the above!

Adapted from Ben Sigelman 9

Enough theory

Let's see how a distributed trace looks like using Jaeger.

Use your laptop / cell phone / connected watch to go to
secretaire.dorsal.polymtl.ca:8081

and have fun clicking everywhere.

Source of the demo app: Take OpenTracing for a HotROD ride, Yuri Shkuro

https://medium.com/opentracing/take-opentracing-for-a-hotrod-ride-f6e3141f7941

10

New investigations

Objectives and future work

Where does OpenTracing fail?

Ok, have
you tried to
parallelize?

Y

problem is
Task2, right?

Web app

What do we want?

|
= A solution for debugging complex problems
= Mutex or I/O or network contention
o Other subtle bottlenecks
= But... it does exist, right?
Systemd-logind | 1075 |1 : |
¥ NetworkManager | 1189 |1 = —M“
gmain 1213 |1:
gdbus 1220 1>
dhclient 1569 1.
¥ cupsd 1228 (1 m
dbus 2946 1.
v libvirtd 1232 |1 —_EH
libvirtd 1303 1.

The best of both worlds

Mutex contention analysis

Web app

Mutex held by transaction 162)“

Density of I/O events

Web app

The long and winding road...

= Integrating LTTng traces into OpenTracing is not
easy
= Concept of spans vs. concepts of events
= L TTng says threads, OpenTracing says tasks...
= How to synchronize precisely the traces?
= Our tools do not fully support containers
= Track containers creation and destruction (WIP)

= Capture events from within containers

15

Summarizing the objectives

= Develop container-aware tracing using LTTng

= Joint analysis of LTTng and OpenTracing traces

= Design specific analyses for distributed transactions
= \We can use the TraceCompass backend!

= Propose and implement a workflow that would

integrate well with the OpenTracing ecosystem

16

POLYTECHNIQUE {75

Thank you!
Questions, ideas, remarks?

D4 loic.gelle@polymtl.ca

g Github: @loicgelle

