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Context

The evolution of computer systems
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From bare metal to VMs to Containers
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From monoliths to microservices
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Distributed Concurrency
“The Simple Thing”

Basic Concurrency

Async Concurrency

Illustration courtesy of Ben Sigelman

Wut?



Distributed tracing to the rescue
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Key facts about OpenTracing

▪ An open-source specification for distributed tracing

▪ A vendor-neutral API for instrumenting libraries
▫ API available for popular languages like Java, Go, C++, Python…

▫ Lots of libraries like gRPC, NodeJS… are instrumented

▪ Many tracers (Jaeger, OpenZipkin, LightStep…) 

implement the OpenTracing specification

▫ OpenTracing leaves implementation details to the tracers

▫ Each tracer has different purposes and analyses / UI



OpenTracing focuses on describing tasks instead of events.
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Describing complex transactions
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Adapted from Ben Sigelman
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Key concepts in OpenTracing

Span A
Parent span

Span B
Child of A

Span C
Child of B

log

log log

Adapted from Ben Sigelman

Span D
Child of A

log

Span context

log log

Service 1 Service 2Network call

▪ A span has a name, a start, a duration, tags and attached logs.

▪ The span context identifies the trace; it is injected into requests.

▪ A trace is the recording of the whole transaction using the above!



Enough theory

Let’s see how a distributed trace looks like using Jaeger.
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Use your laptop / cell phone / connected watch to go to

Source of the demo app: Take OpenTracing for a HotROD ride, Yuri Shkuro

secretaire.dorsal.polymtl.ca:8081
and have fun clicking everywhere.

https://medium.com/opentracing/take-opentracing-for-a-hotrod-ride-f6e3141f7941



New investigations

Objectives and future work



12

Where does OpenTracing fail?
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What do we want?

▪ A solution for debugging complex problems

▫ Mutex or I/O or network contention

▫ Other subtle bottlenecks

▪ But… it does exist, right?
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The best of both worlds
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The long and winding road... 

▪ Integrating LTTng traces into OpenTracing is not 

easy

▫ Concept of spans vs. concepts of events

▫ LTTng says threads, OpenTracing says tasks…

▫ How to synchronize precisely the traces?

▪ Our tools do not fully support containers

▫ Track containers creation and destruction (WIP)

▫ Capture events from within containers
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Summarizing the objectives

▪ Develop container-aware tracing using LTTng

▪ Joint analysis of LTTng and OpenTracing traces

▪ Design specific analyses for distributed transactions

▫ We can use the TraceCompass backend!

▪ Propose and implement a workflow that would 

integrate well with the OpenTracing ecosystem



Thank you!
Questions, ideas, remarks?

loic.gelle@polymtl.ca

Github: @loicgelle


