
Tracing and Performance 
Analysis of Modern Distributed 

Applications

Progress Report Meeting - May 10, 2018

DORSAL

Ecole polytechnique de Montréal

Loïc Gelle

Michel Dagenais



Context

The evolution of computer systems



3



4

From bare metal to VMs to Containers

Hardware

OS

Guest OS

Libraries

Apps

Hardware

OS

HypervisorLibraries

Apps

Bare metal Containers

Libs

Apps Apps

Hardware

OS

Libs

???

VMs



From monoliths to microservices

5

Distributed Concurrency
“The Simple Thing”

Basic Concurrency

Async Concurrency

Illustration courtesy of Ben Sigelman

Wut?



Distributed tracing to the rescue



7

Key facts about OpenTracing

▪ An open-source specification for distributed tracing

▪ A vendor-neutral API for instrumenting libraries
▫ API available for popular languages like Java, Go, C++, Python…

▫ Lots of libraries like gRPC, NodeJS… are instrumented

▪ Many tracers (Jaeger, OpenZipkin, LightStep…) 

implement the OpenTracing specification

▫ OpenTracing leaves implementation details to the tracers

▫ Each tracer has different purposes and analyses / UI



OpenTracing focuses on describing tasks instead of events.

8

Describing complex transactions

Client

Web app

Auth Order DB

What the trace looks like
Time

Client

Web app

Auth

Order

Check order

DB

What the transaction looks like

1 8

2
3 4 5 6

7

Adapted from Ben Sigelman



9

Key concepts in OpenTracing

Span A
Parent span

Span B
Child of A

Span C
Child of B

log

log log

Adapted from Ben Sigelman

Span D
Child of A

log

Span context

log log

Service 1 Service 2Network call

▪ A span has a name, a start, a duration, tags and attached logs.

▪ The span context identifies the trace; it is injected into requests.

▪ A trace is the recording of the whole transaction using the above!



Enough theory

Let’s see how a distributed trace looks like using Jaeger.

10

Use your laptop / cell phone / connected watch to go to

Source of the demo app: Take OpenTracing for a HotROD ride, Yuri Shkuro

secretaire.dorsal.polymtl.ca:8081
and have fun clicking everywhere.

https://medium.com/opentracing/take-opentracing-for-a-hotrod-ride-f6e3141f7941



New investigations

Objectives and future work



12

Where does OpenTracing fail?

Client

Web app

Task 1

Task 2

Task 3

Ok, have 
you tried to 
parallelize?

Client

Web app

Task 1

Task 2

Task 3

Err… The 
problem is 

Task 2, right?



13

What do we want?

▪ A solution for debugging complex problems

▫ Mutex or I/O or network contention

▫ Other subtle bottlenecks

▪ But… it does exist, right?



14

The best of both worlds

Client

Web app

Task 1 Task 3

futex Mutex held by transaction 162 futex

Mutex contention analysis

Client

Web app

Task 1 Task 3

Density of I/O events



15

The long and winding road... 

▪ Integrating LTTng traces into OpenTracing is not 

easy

▫ Concept of spans vs. concepts of events

▫ LTTng says threads, OpenTracing says tasks…

▫ How to synchronize precisely the traces?

▪ Our tools do not fully support containers

▫ Track containers creation and destruction (WIP)

▫ Capture events from within containers



16

Summarizing the objectives

▪ Develop container-aware tracing using LTTng

▪ Joint analysis of LTTng and OpenTracing traces

▪ Design specific analyses for distributed transactions

▫ We can use the TraceCompass backend!

▪ Propose and implement a workflow that would 

integrate well with the OpenTracing ecosystem



Thank you!
Questions, ideas, remarks?

loic.gelle@polymtl.ca

Github: @loicgelle


