
Combining OpenTracing and 
Kernel Tracing for Performance 

Analysis of Distributed 
Applications

Progress Report Meeting - May 6, 2019

DORSAL

Ecole polytechnique de Montréal

Loïc Gelle

Michel Dagenais



Context

OpenTracing: where does it help, where does it fail?



What distributed tracing is all about

3Illustration courtesy of Ben Sigelman

▪ Single user request, multiple 

machines

▪ We want to tell the full story 

of a given request



4

Key facts about OpenTracing

▪ An open-source specification for distributed tracing

▪ A vendor-neutral API for instrumenting libraries
▫ API available for popular languages like Java, Go, C++, Python…

▫ Lots of libraries like gRPC, NodeJS… are instrumented

▪ Many tracers (Jaeger, OpenZipkin, LightStep…) 

implement the OpenTracing specification

▫ OpenTracing leaves implementation details to the tracers

▫ Each tracer has different purposes and analyses / UI



OpenTracing focuses on describing tasks instead of events.

5

Describing complex transactions

Client

Web app

Auth Order DB

What the trace looks like
Time

Client

Web app

Auth

Order

Check order

DB

What the transaction looks like

1 8

2
3 4 5 6

7

Adapted from Ben Sigelman



6

Key concepts in OpenTracing

Span A
Parent span

Span B
Child of A

Span C
Child of B

log

log log

Adapted from Ben Sigelman

Span D
Child of A

log

Span context

log log

Service 1 Service 2Network call

▪ A span has a name, a start, a duration, tags and attached logs.

▪ The span context identifies the trace; it is injected into requests.

▪ A trace is the recording of the whole transaction using the above!



The benefits of OpenTracing

7

▪ The community is growing

▪ The traces provide useful high-level context for 

debugging applications

▪ The tracers provide the machinery to collect the 

traces and display them

▪ Use and deployment are fairly easy



Where does OpenTracing fail?

8

Client

Web app

Task 1

Task 2

Client

Web app

Task 1

Task 2

Common timeline

Trace A

Trace B



Same events, different perspective

9

Client

Web app

Task 1

Task 2

Client

Web app

Task 1

Task 2

Common timeline

Trace A

Trace B

Task 1Task 1

futex futex

futex futexfutex



The approach

Combining OpenTracing and kernel traces



11

Bridging the gap

▪ On the one side: threads, nanosecond-precise events

▪ On the other side: tasks, microsecond-precise events

▫ We need to synchronize events

▫ We need to relate tasks back to their thread(s)



12

Techniques for synchronization

▪ “Fake syscall” (Google)

▪ Kernel module + added LTTng kernel context (Boston 

University)

▪ Instrumentation of the OpenTracing tracer using 

LTTng-UST (what we use)



13

Collection of traces

Host

Application

LTTng traces

Kernel

jaeger-client

liblttng-ust

jaeger-agentlttng-sessiond
lttng-consumerd jaeger-collector

Jaeger traces

Trace chunks
Trace events



Analyses

TraceCompass views



15

Proof of concept in TraceCompass

▪ Two views to validate the approach

▫ Critical path of requests

▫ Aggregated view per request of the critical path

▪ Based on prior work from Ericsson

▪ The instrumented application is Cassandra



16

Critical path of requests



17

Aggregated information



Conclusions and future 
work



Limitations and remarks

● We need developers to provide a good 

instrumentation of their application

● Analyses limited to a single machine

● The volume of the traces can be tough to handle and 

sampling is not straightforward

● Benchmarking has yet to be done

19



Future work

● Adapt the trace collection / analysis to applications 

hosted in containers

● Bring the analyses to UIs widely used by the 

OpenTracing community (Jaeger, Kibana)

● Work with the community to integrate the changes 

to the OpenTracing tracers

20



Thank you!
Questions, ideas, remarks?

loic.gelle@polymtl.ca

Github: @loicgelle


