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Context

OpenTracing: where does it help, where does it fail?



What distributed tracing is all about

3Illustration courtesy of Ben Sigelman

▪ Single user request, multiple 

machines

▪ We want to tell the full story 

of a given request
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Key facts about OpenTracing

▪ An open-source specification for distributed tracing

▪ A vendor-neutral API for instrumenting libraries
▫ API available for popular languages like Java, Go, C++, Python…

▫ Lots of libraries like gRPC, NodeJS… are instrumented

▪ Many tracers (Jaeger, OpenZipkin, LightStep…) 

implement the OpenTracing specification

▫ OpenTracing leaves implementation details to the tracers

▫ Each tracer has different purposes and analyses / UI



OpenTracing focuses on describing tasks instead of events.
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Describing complex transactions
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Adapted from Ben Sigelman
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Key concepts in OpenTracing
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Adapted from Ben Sigelman
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log log
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▪ A span has a name, a start, a duration, tags and attached logs.

▪ The span context identifies the trace; it is injected into requests.

▪ A trace is the recording of the whole transaction using the above!



The benefits of OpenTracing
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▪ The community is growing

▪ The traces provide useful high-level context for 

debugging applications

▪ The tracers provide the machinery to collect the 

traces and display them

▪ Use and deployment are fairly easy



Where does OpenTracing fail?
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Same events, different perspective
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The approach

Combining OpenTracing and kernel traces
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Bridging the gap

▪ On the one side: threads, nanosecond-precise events

▪ On the other side: tasks, microsecond-precise events

▫ We need to synchronize events

▫ We need to relate tasks back to their thread(s)
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Techniques for synchronization

▪ “Fake syscall” (Google)

▪ Kernel module + added LTTng kernel context (Boston 

University)

▪ Instrumentation of the OpenTracing tracer using 

LTTng-UST (what we use)
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Collection of traces
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Analyses

TraceCompass views
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Proof of concept in TraceCompass

▪ Two views to validate the approach

▫ Critical path of requests

▫ Aggregated view per request of the critical path

▪ Based on prior work from Ericsson

▪ The instrumented application is Cassandra
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Critical path of requests
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Aggregated information



Conclusions and future 
work



Limitations and remarks

● We need developers to provide a good 

instrumentation of their application

● Analyses limited to a single machine

● The volume of the traces can be tough to handle and 

sampling is not straightforward

● Benchmarking has yet to be done
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Future work

● Adapt the trace collection / analysis to applications 

hosted in containers

● Bring the analyses to UIs widely used by the 

OpenTracing community (Jaeger, Kibana)

● Work with the community to integrate the changes 

to the OpenTracing tracers

20



Thank you!
Questions, ideas, remarks?

loic.gelle@polymtl.ca

Github: @loicgelle


