POLYTECHNIQUE /53
MONTREAL -2

Combining OpenTracing and
Kernel Tracing for Performance
Analysis of Distributed

Applications

Progress Report Meeting - May 6, 2019 | oic Gelle

DORSAL
Ecole polytechnigue de Montréal Michel Dagenals

Context

OpenTracing: where does it help, where does it fail?

What distributed tracing is all about

= Single user request, multiple

machines

= We want to tell the full story

of a given request

llustration courtesy of Ben Sigelman 3

Key facts about OpenTracing

= An open-source specification for distributed tracing

= A vendor-neutral API for instrumenting libraries

API available for popular languages like Java, Go, C++, Python...
Lots of libraries like gRPC, Node]S... are instrumented

= Many tracers (Jaeger, OpenZipkin, LightStep...)
implement the OpenTracing specification

o OpenTracing leaves implementation details to the tracers

Each tracer has different purposes and analyses [Ul

Describing complex transactions

OpenTracing focuses on describing tasks instead of events.

Client
Web app

Check order

r o8
Time

What the transaction looks like What the trace looks like

Adapted from Ben Sigelman 5

Key concepts in OpenTracing

Service 1 Network call Service 2
Span s Ehplca:lnfa
Parent i
m— drent span ._§E’§UEQE‘JEQE<:C_. rdao B
. SpanB | | | |
" Clhild of A = log log log log
e
-
log log

A span has a name, a start, a duration, tags and attached logs.
= The span context identifies the trace: it is injected into requests.

A trace is the recording of the whole transaction using the above!

Adapted from Ben Sigelman 6

The benefits of OpenTracing

= The community is growing
= The traces provide useful high-level context for
debugging applications

= The tracers provide the machinery to collect the

traces and display them

= Use and deployment are fairly easy

_ 7

Where does OpenTracing fail?

Trace A
<€ >

Web app

Task 2

Trace B

<€ >
Common timeline

_ 8

>

Same events, different perspective

futex futex

Y

futex futex

-

Common timeline

The approach

Combining OpenTracing and kernel traces

Bridging the gap

= On the one side: threads, nanosecond-precise events

¥ cassandra-stres 23468 |+
¥ java 23469
¥ java 23470
java 23471

java 23473
java
java

23474
23475

= On the other side: tasks, microsecond-precise events
= \We need to synchronize events
= \We need to relate tasks back to their thread(s)

Techniques for synchronization

= “Fake syscall” (Google)

= Kernel module + added LTTng kernel context (Boston
University)

= Instrumentation of the OpenTracing tracer using
L TTng-UST (what we use)

12

Collection of traces

i ¥ — Trace chunks
Host ! ——» Trace events

— Kernel

Application

lttng-sessiond
lttng-consumerd

jaeger-agent —> jaeger-collector

Jaeger traces

13

Analyses

TraceCompass views

Proof of concept in TraceCompass

= Two views to validate the approach

= (ritical path of requests

= Aggregated view per request of the critical path
= Based on prior work from Ericsson

= The instrumented application is Cassandra

Critical path of requests

gk Control Flow | == Spans Life SSW & Statistics

¥ db3d33aeele5b509
v [db3d33aeele5b509] Execute CQL3 query ‘ -
[a0b7312fa81df357] Run l . - ¥ 3 SR RS 1 W s 1 3 f=rg

09:23:48.925 09:23:48.930 09:23:48.935

¥ be706e602f66ce72
v [be706e602f66ce72] Execute CQL3 query | " =
[23e768a25afaf342] Run ' -
v 32bad193966b3d8e |
v [a2bad193966b3d8e] Execute CQL3 query | g
[113ba2ef8551334d] Run
¥ bcebf913acc4d67e
¥ [bcebf913acc4d67e] Execute CQL3 query
[71beSed2dafba215] Run
v 59bb876eefc05d4d
v [59bb876eefc05d4d] Execute CQL3 query
[968eaeff01c9374a] Run
v 4e12c79b6bf21388
¥ [4e12c79b6bf21388] Execute CQL3 query
[9bf882cB8a584e360] Run
v ab6b935d4c7abe5e
v [a6b935d4c7a6e5e] Execute CQL3 query
[b22f65736684627c] Run
v eac19ac4b012bba7
¥ [eac19ac4b012bba7] Execute CQL3 query

[7892d3700ed1425] Run | - ® T 0 s

16

Aggregated information

Al Histogram i Properties := State System Explorer = Critical Flow View =g Progress | = Weighted Tree Viewer (incubator) & S0

Duration state of the request
v eacl9ac4b012bba7

v [eacl9ac4b012bba7] Execute CQL3 query 17,352 ms
[BLOCKED] RUNNING 7,705ms

[BLOCKED] PREEMPTED " 3133ms

Blocked by span be706e602f66ce72:be706e602f66ce72 M 3112 ms

RUNNING " 2,867 ms PREEMPTED
PREEMPTED 328,989 ps RUNNING

Blocked by span be706e602f66ce72:be706e602f66ce72
[BLOCKED] PREEMPTED

[BLOCKED] RUNNING

OTHERS

Blocked by span 4e12c79b6bf21388:4e12c79b6bf21388 | 105,917 ps
Blocked by span a6b935d4c7a6e5e:abb935d4c7abe5e 78,198 ps
Blocked by span 59bb876eefc05d4d:59bb876eefc05d4d | 21,177 ps

~ [789ad3700ed142f5] Run 76,640 ms
RUNNING " 3,520ms
PREEMPTED M 2,827 ms

[BLOCKED] PREEMPTED 214,611 ps

Conclusions and future
work

Limitations and remarks

e \We need developers to provide a good
instrumentation of their application

e Analyses limited to a single machine

e The volume of the traces can be tough to handle and
sampling is not straightforward

e Benchmarking has yet to be done

Future work

e Adapt the trace collection / analysis to applications
hosted in containers

e Bring the analyses to Uls widely used by the
OpenTracing community (Jaeger, Kibana)

e Work with the community to integrate the changes

to the OpenTracing tracers

POLYTECHNIQUE /53
MONTREAL -2

Thank you!
Questions, ideas, remarks?

DM loic.gelle@polymtl.ca

g Github: @loicgelle

