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Context

OpenTracing: where does it help, where does it fail?




What distributed tracing is all about

= Single user request, multiple

machines

= We want to tell the full story

of a given request
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Key facts about OpenTracing

= An open-source specification for distributed tracing

= A vendor-neutral API for instrumenting libraries

API available for popular languages like Java, Go, C++, Python...
Lots of libraries like gRPC, Node]S... are instrumented

= Many tracers (Jaeger, OpenZipkin, LightStep...)
implement the OpenTracing specification

o OpenTracing leaves implementation details to the tracers

Each tracer has different purposes and analyses [ Ul



Describing complex transactions

OpenTracing focuses on describing tasks instead of events.
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What the transaction looks like What the trace looks like

Adapted from Ben Sigelman 5



Key concepts in OpenTracing
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A span has a name, a start, a duration, tags and attached logs.
= The span context identifies the trace: it is injected into requests.

A trace is the recording of the whole transaction using the above!
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The benefits of OpenTracing

= The community is growing
= The traces provide useful high-level context for
debugging applications

= The tracers provide the machinery to collect the

traces and display them

= Use and deployment are fairly easy
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Where does OpenTracing fail?
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Same events, different perspective
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The approach

Combining OpenTracing and kernel traces




Bridging the gap

= On the one side: threads, nanosecond-precise events
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= On the other side: tasks, microsecond-precise events
= \We need to synchronize events
= \We need to relate tasks back to their thread(s)



Techniques for synchronization

= “Fake syscall” (Google)

= Kernel module + added LTTng kernel context (Boston
University)

= Instrumentation of the OpenTracing tracer using
L TTng-UST (what we use)
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Collection of traces
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Analyses

TraceCompass views




Proof of concept in TraceCompass

= Two views to validate the approach

= (ritical path of requests

= Aggregated view per request of the critical path
= Based on prior work from Ericsson

= The instrumented application is Cassandra



Critical path of requests
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Aggregated information
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Duration state of the request
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Conclusions and future
work




Limitations and remarks

e \We need developers to provide a good
instrumentation of their application

e Analyses limited to a single machine

e The volume of the traces can be tough to handle and
sampling is not straightforward

e Benchmarking has yet to be done



Future work

e Adapt the trace collection / analysis to applications
hosted in containers

e Bring the analyses to Uls widely used by the
OpenTracing community (Jaeger, Kibana)

e Work with the community to integrate the changes

to the OpenTracing tracers
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Thank you!
Questions, ideas, remarks?

DM loic.gelle@polymtl.ca

g Github: @loicgelle




