
POLYTECHNIQUE
MONTREAL

Iman Kohyarnejadfard
Prof. Daniel Aloise 

Prof. Michel Dagenais

January 2021

Anomaly detection in microservice systems 
using tracing data and Machine Learning



1

01

02

Methodology and 
Implementation   

03

Microservice 
Environment

05
Conclusions & 
Questions 

Introduction

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

04

Previously on
Anomaly Detection 



2

Anomaly Detection

Introduction          Previously on Anomaly Detection        Methodology           Conclusion

Anomaly is something different which deviates from the common rule.

Anomaly detection refers to the problem of finding patterns in data that do not conform to 
expected behavior.

Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Many anomaly detection techniques have been developed for various application domains.



3POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Workload

  
  the  application imposes 

  continuous and higher than 
expected average workload 

intensity to the system.

Performance Anomaly

The most significant obstacles 

to the system to perform 

confidently and predictably 

                Sources

Faults in system resources and
            Components

       
         affect application 
performance at a high cost

Software bugs, operator 
errors, hardware faults, and 

       security violations           

Introduction          Previously on Anomaly Detection        Methodology           Conclusion

varying application load,   
application  bugs, 

updates, and hardware 
failure

system failures



4POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Previously on Anomaly Detection

01

System 
performance 

anomaly 
detection

Supervised: A multi-class support vector machine approach was applied to 
detect the anomalous system call sequences.

Introduction          Previously on Anomaly Detection        Methodology           Conclusion

Unsupervised: Using clustering techniques such as k-means or DBSCAN  
removes the need for providing a huge labeled dataset. 

Semi-supervised: This method benefits from both supervised and 
unsupervised learning techniques to distinguish between normal and 
anomalous behavior.



4POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Previously on Anomaly Detection

02
Microservice 
Environment01

The concept of DevOps and agile approaches like microservice architectures and Continuous Integration 
becomes extremely popular since the need for flexible and scalable solutions increased.

Introduction          Previously on Anomaly Detection        Methodology           Conclusion



5

Microservice-based applications

Microservices are small services that are interconnected with many other microservices to present 
complex services like web applications.

Microservices provide greater scalability and make distributing the application over 
multiple physical or virtual systems possible.

Microservices architecture tackles the problem of productivity and speed by 
decomposing applications into smaller services that are faster to develop and 
easier to manage; if one microservice fails, the others will continue to work.

Each microservice can be written using different technologies, and 
they enable continuous delivery. 

01

02

03

04

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Introduction          Microservice Environment        Methodology           Conclusion



5POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Despite all these benefits, by increasing the degree of automation and distribution, 
application performance monitoring becomes more challenging because 
microservices are possibly short-lived and may be replaced within seconds. 

Hence new requirements in the way of anomaly detection have emerged as these 
changes could also be the cause of anomalies.

Microservice-based applications

Introduction          Microservice Environment        Methodology           Conclusion



Methodology
The methodology is based on collecting sequences of events during spans and sending them to the Machine learning module.

The model learns the possible sequence of events and predicts the next event.

In the detection phase, we use this sequential information to make a prediction and compare the predicted output against the 
observed value. 

6POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Distributed tracing 

7

The “span” is the primary building block of a distributed trace, representing an individual unit of work done in a distributed 
system.

A microservice-based application consists of tens, hundreds, or thousands of services running across many hosts, and it is no 
longer possible to rely on an individual trace.

Distributed tracing provides a view of a request's life as it travels across multiple hosts and services communicating over 
various protocols.

   OpenTracing vs. LTTng: Different in the way we collect spans.

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Span

Start

End

Service 2

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and sub spans

8

Service 1

Req1,1 Resp1,1
Service 3

Service 2

In the traces we collected from the Ciena simulator, ReqResp events make spans.

Spans are initiated with a ReqResp event of type Req and ended by a  Resp.

Requests and responses that happen during a span share a unique tag for example Tag = 00.

Root span

Name: ReqResp
Type: Req
Tag: 00

Name: ReqResp
Type: Resp
Tag: 00

Time

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and sub spans

8

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Service 2

Many subspans may be generated during a span's lifetime.

The tag of their parent is embedded in their tag.

Root span

Name: ReqResp
Type: Req
Tag: 00/01

Name: ReqResp
Type: Resp
Tag: 00/01

Time

Subspan 1 Subspan 2

Name: ReqResp
Type: Req
Tag: 00/02

Name: ReqResp
Type: Resp
Tag: 00/02

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and sub spans

8

Root span

Req/00 , Req/00/01 , Resp/00/01 , Req/00/02 , Resp/00/02 , Resp/00

Subspan 1 Subspan 2

Introduction          Microservice Environment        Methodology           Conclusion

Time

Subspan 1 Subspan 2

Root span

Many subspans may be generated during a span's lifetime.

The tag of their parent is embedded in their tag.



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Dataset

9

e0
Req RespReq Respe1 e2 e3 e4 e5 e7

e0
Req RespReq Respe1 e2 e3 e4 e5 e7

e0
Req RespReq Respe1 e2 e3

e0
Req RespReq Respe1 e2 e3 e4 e5Da

ta
se

t

Tens of userspace and kernel events happen during spans as well, and we put them in the right place in the 
sequence.

Introduction          Microservice Environment        Methodology           Conclusion



10POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

LS
TM

Po
in

t a
no

m
al

ie
s v

s. 
Co

lle
ct

iv
e 

an
om

al
ie

s
Machine Learning Module

Two main forms of anomalies are point anomalies and collective anomalies.

● Point anomalies are data points that 
are different from normal data. 

● It's not always possible to detect the 
individual data points as anomalies by 
themselves. 

● However, their occurrence together as a 
collection may cause collective 
anomalies.

●  A limited number of events can be the 
result of an action. Therefore few of the 
possible events can appear as the next 
event in the sequence.

● The fundamental intuition behind this work 
is natural language processing.

● Events as elements of a sequence follow 
specific patterns and grammar rules.

● We used an LSTM neural network to learn a 
model of event patterns from normal 
execution.

● In this way, we avoid creating labeled 
datasets for supervised learning and the 
difficulty of interpreting clustering.

Introduction          Microservice Environment        Methodology           Conclusion



11

L S MT

Learning Module

Introduction          Microservice Environment        Methodology           Conclusion



11

L S MT

Learning Module

Introduction          Microservice Environment        Methodology           Conclusion

The model learns a probability distribution Pr(mt = ki | mt−h ,..., mt−2, mt−1) that maximizes 
the probability of the training sequence.

The strategy is to sort the possible events based on their probabilities Pr[mt | w].

An event is normal if it’s among the top g  candidates. 

Otherwise,  that event is flagged as abnormal.



12POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Kubernetes Platform

VM

Workload 
Generator

Data Set

future work
An open-source microservices-based application is developed for evaluating our proposed anomaly detection 
method.

We deployed several instances of each service at the same time using Docker and Kubernetes.

This time we use Jaeger to collect the data.



13

Iman.kohyarnejadfard@polymtl.ca
https://github.com/kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca


References

14

[1] Z. Xu, X. Yu, Y. Feng, J. Hu, Z. Tari, and F. Han. A multi-module anomaly detection scheme based on system call  prediction. In 2013 IEEE 
8th Conference on Industrial Electronics and Applications (ICIEA), pages 1376–1381, June 2013.
[2] A. Liu, C. Martin, T. Hetherington, and S. Matzner. A comparison of system call feature representations for insider threat detection. In 
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop, pages 340–347, June 2005.
[3] Michael Dymshits, Ben Myara, and David Tolpin. Process monitoring on sequences of system call count vectors. 2017 International 
Carnahan Conference on Security Technology (ICCST), pages 1–5, 2017.
[4] Bojan Kolosnjaji, Apostolis Zarras,  George Webster, and Claudia Eckert. Deep learning for classification of malware system call 
sequences. In Byeong Ho Kang and Quan Bai, editors, AI 2016: Advances in Artificial Intelligence, pages 137–149, Cham, 2016. Springer 
Iternational Publishing.
[5] Mathieu Desnoyers and Michel Dagenais. The lttng tracer : A low impact performance and behavior monitor for gnu / linux. In OLS 
Ottawa Linux Symposium, 2006.
[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, 
Heidelberg, 2006. 
[7] Ulrich H.-G. Kre. Advances in kernel methods. chapter Pairwise Classification and Support Vector Machines, pages 255–268. MIT Press, 
Cambridge, MA, USA, 1999.
[8] Du, Qingfeng, Tiandi Xie, and Yu He. "Anomaly Detection and Diagnosis for Container-Based Microservices with Performance 
Monitoring." International Conference on Algorithms and Architectures for Parallel Processing. Springer, Cham, 2018.
[9] Cao, Wei, Zhiying Cao, and Xiuguo Zhang. "Research on Microservice Anomaly Detection Technology Based on Conditional Random 
Field." Journal of Physics: Conference Series. Vol. 1213. No. 4. IOP Publishing, 2019.
[10] Nikiforov, Roman. "Clustering-based Anomaly Detection for microservices." arXiv preprint arXiv:1810.02762 (2018).
[11] Pahl, Marc-Oliver, and François-Xavier Aubet. "All eyes on you: Distributed Multi-Dimensional IoT microservice anomaly detection." 
2018 14th International Conference on Network and Service Management (CNSM). IEEE, 2018.
[12] Nandi, Animesh, et al. "Anomaly detection using program control flow graph mining from execution logs." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

