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Anomaly Detection

Introduction          Previously on Anomaly Detection        Methodology           Conclusion

Anomaly is something different which deviates from the common rule.

Anomaly detection refers to the problem of finding patterns in data that do not conform to 
expected behavior.

Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.
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Many anomaly detection techniques have been developed for various application domains.
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Workload

  
  the  application imposes 

  continuous and higher than 
expected average workload 

intensity to the system.

Performance Anomaly

The most significant obstacles 

to the system to perform 

confidently and predictably 

                Sources

Faults in system resources and
            Components

       
         affect application 
performance at a high cost

Software bugs, operator 
errors, hardware faults, and 

       security violations           
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varying application load,   
application  bugs, 

updates, and hardware 
failure

system failures
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System 
performance 

anomaly 
detection

Supervised: A multi-class support vector machine approach was applied to 
detect the anomalous system call sequences.
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Unsupervised: Using clustering techniques such as k-means or DBSCAN  
removes the need for providing a huge labeled dataset. 

Semi-supervised: This method benefits from both supervised and 
unsupervised learning techniques to distinguish between normal and 
anomalous behavior.
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02
Microservice 
Environment01

The concept of DevOps and agile approaches like microservice architectures and Continuous Integration 
becomes extremely popular since the need for flexible and scalable solutions increased.

Introduction          Previously on Anomaly Detection        Methodology           Conclusion



5

Microservice-based applications

Microservices are small services that are interconnected with many other microservices to present 
complex services like web applications.

Microservices provide greater scalability and make distributing the application over 
multiple physical or virtual systems possible.

Microservices architecture tackles the problem of productivity and speed by 
decomposing applications into smaller services that are faster to develop and 
easier to manage; if one microservice fails, the others will continue to work.

Each microservice can be written using different technologies, and 
they enable continuous delivery. 
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03

04
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Despite all these benefits, by increasing the degree of automation and distribution, 
application performance monitoring becomes more challenging because 
microservices are possibly short-lived and may be replaced within seconds. 

Hence new requirements in the way of anomaly detection have emerged as these 
changes could also be the cause of anomalies.

Microservice-based applications
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Methodology
The methodology is based on collecting sequences of events during spans and sending them to the Machine learning module.

The model learns the possible sequence of events and predicts the next event.

In the detection phase, we use this sequential information to make a prediction and compare the predicted output against the 
observed value. 

6POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Distributed tracing 
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The “span” is the primary building block of a distributed trace, representing an individual unit of work done in a distributed 
system.

A microservice-based application consists of tens, hundreds, or thousands of services running across many hosts, and it is no 
longer possible to rely on an individual trace.

Distributed tracing provides a view of a request's life as it travels across multiple hosts and services communicating over 
various protocols.

   OpenTracing vs. LTTng: Different in the way we collect spans.

Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Span

Start

End

Service 2
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Extracting spans and sub spans
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Service 1

Req1,1 Resp1,1
Service 3

Service 2

In the traces we collected from the Ciena simulator, ReqResp events make spans.

Spans are initiated with a ReqResp event of type Req and ended by a  Resp.

Requests and responses that happen during a span share a unique tag for example Tag = 00.

Root span

Name: ReqResp
Type: Req
Tag: 00

Name: ReqResp
Type: Resp
Tag: 00

Time
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Extracting spans and sub spans
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Service 1

Req1,1 Resp1,1

Req1,2

Resp1,2

Resp1,3

Req1,3 Service 3

Service 2

Many subspans may be generated during a span's lifetime.

The tag of their parent is embedded in their tag.

Root span

Name: ReqResp
Type: Req
Tag: 00/01

Name: ReqResp
Type: Resp
Tag: 00/01

Time

Subspan 1 Subspan 2

Name: ReqResp
Type: Req
Tag: 00/02

Name: ReqResp
Type: Resp
Tag: 00/02

Introduction          Microservice Environment        Methodology           Conclusion



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Extracting spans and sub spans
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Root span

Req/00 , Req/00/01 , Resp/00/01 , Req/00/02 , Resp/00/02 , Resp/00

Subspan 1 Subspan 2
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Time

Subspan 1 Subspan 2

Root span

Many subspans may be generated during a span's lifetime.

The tag of their parent is embedded in their tag.
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Dataset
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Tens of userspace and kernel events happen during spans as well, and we put them in the right place in the 
sequence.
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Machine Learning Module

Two main forms of anomalies are point anomalies and collective anomalies.

● Point anomalies are data points that 
are different from normal data. 

● It's not always possible to detect the 
individual data points as anomalies by 
themselves. 

● However, their occurrence together as a 
collection may cause collective 
anomalies.

●  A limited number of events can be the 
result of an action. Therefore few of the 
possible events can appear as the next 
event in the sequence.

● The fundamental intuition behind this work 
is natural language processing.

● Events as elements of a sequence follow 
specific patterns and grammar rules.

● We used an LSTM neural network to learn a 
model of event patterns from normal 
execution.

● In this way, we avoid creating labeled 
datasets for supervised learning and the 
difficulty of interpreting clustering.
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L S MT

Learning Module
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L S MT

Learning Module
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The model learns a probability distribution Pr(mt = ki | mt−h ,..., mt−2, mt−1) that maximizes 
the probability of the training sequence.

The strategy is to sort the possible events based on their probabilities Pr[mt | w].

An event is normal if it’s among the top g  candidates. 

Otherwise,  that event is flagged as abnormal.
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Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Kubernetes Platform

VM

Workload 
Generator

Data Set

future work
An open-source microservices-based application is developed for evaluating our proposed anomaly detection 
method.

We deployed several instances of each service at the same time using Docker and Kubernetes.

This time we use Jaeger to collect the data.
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Iman.kohyarnejadfard@polymtl.ca
https://github.com/kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca
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