
LTTng and Related
Projects Updates

 Polytechnique Montréal - January 2021

1



Outline

● Babeltrace 2.1’s ongoing development

● CTF 2.0

● LTTng 2.13 and 2.14’s ongoing development

● Restartable Sequences

● LTTng-modules upstreaming

2



Babeltrace 2.1 – Ongoing Development

Development work on Babeltrace 2.1 is ongoing:
○ Optional pretty-printing of bitmask enum values,

ex: 1053696 vs ‘O_APPEND | O_SYNC’
○ Changes required to support CTF 2.0.

Started the development of an experimental ftrace source 
component:

○ No precise timeline, may live out of tree until it is 
production-ready.

3



CTF 2.0

The LTTng 2.x ecosystem has been using the CTF 1.8 format 
for ten years (2010).

Limitations of the CTF 1.8 format has stilted the development of 
some functionality in viewers:

○ No extension mechanism,
○ No way to define the semantics of events / fields,
○ The format is hard to consume (mostly the TSDL 

metadata),
○ Some areas of the specification were lacking in precision 

(mostly time handling).

4



CTF 2.0

EfficiOS is leading the effort to address those shortcomings with a 
new version of the specification:

○ Gathered feedback following the publication of the first draft,
○ A new draft of the CTF 2.0 specification is available:

https://diamon.org/ctf/files/CTF2-PROP-2.0.html

The ease of adoption of the new tracing format is a key concern. 
So far, our transition plan is in three phases:

1. Babeltrace 2 will support reading both CTF 1.8 and CTF 2.0,
2. LTTng will produce both CTF 1.8 and CTF 2.0,
3. CTF 1.8 is eventually phased-out and becomes 

unsupported by LTTng.

5

https://diamon.org/ctf/files/CTF2-PROP-2.0.html


LTTng 2.13 – Ongoing Development

6

Expanding the trigger mechanism is the major focus of this 
release

○ Allows users to specify actions to be taken when a 
specific condition is met.

Triggers were introduced in LTTng 2.10 to:
○ Notify external applications when tracing buffer usage 

reached a given threshold,
○ Allows a controller to disable certain events of lesser 

importance.



LTTng 2.13 – Ongoing Development

7

New actions and conditions indicated in bold.

Supported conditions:
○ Buffer usage threshold
○ Session consumed size
○ Rotation ongoing or completed
○ On event

Supported actions:
○ Notify
○ Record snapshot
○ Rotate session
○ Start session
○ Stop session
○ Group of actions



LTTng 2.13 – Ongoing Development

Allow the capture and transmission of specific event payload 
and context fields along with a notification.

○ Allows external applications to use the context of an event 
to take a decision (such as taking a snapshot on another 
machine).

8



LTTng 2.13 – Ongoing Development
Removed the dependency on liburcu from the LTTng user space 
tracer:

○ Avoid compatibility issues between applications and LTTng-UST 
which may be linked against different liburcu versions.

User space RCU is not stable yet (0.x release), major bumps will most 
likely still occur

○ Linking two versions of liburcu in against an application results 
in a number of conflicts/symbol clashes,

○ We can’t expect applications which use liburcu to be updated 
in lock-step with the tracing infrastructure to use the same library 
version.

The subset of liburcu needed by LTTng UST is integrated in the project 
directly.

9



LTTng 2.14 – Ongoing Development

Trace Hit Counters:
○ Per-CPU array of counters
○ New back-end (counting instead of serializing events)
○ Non-blocking

Use cases:
○ Count the number of event rule hits, without tracing to a ring buffer.
○ Estimate the impact of a given tracing configuration on a live 

production workload.
○ Collect statistics.

10



LTTng 2.14 – Ongoing Development

Implemented as part of libcounter
○ Per-CPU split-counters implementation:

● In kernel memory (LTTng kernel tracer),
● In shared memory (LTTng user space tracer).

In summary:
○ Flexible mapping between events and keys (named “slots” in a trace 

hit counter array), dynamically configurable.
○ Mapping between keys and counter indexes done on a slow-path 

(when instrumentation is registered).
○ Fast-path (in application/kernel) only needs to increment a per-cpu 

counter indexed within an array.
○ Sum per-CPU counters for a given key when viewed.

11



libcounter
Multi-dimension (up to 4) array of counters

○ Only one dimension exposed initially, but additional 
dimensions will be useful for future use-cases
■ e.g. Aggregation based on field value

Counters are configurable:
○ Array length for each dimension,
○ Per-CPU/Global,
○ Modulo or saturation arithmetic,
○ Size of each counter: 8, 16, 32, or 64-bit (limited by 

architecture atomic operation size).

LTTng will initially only expose the needed subset of the 
libcounter features to end users.

12



Restartable Sequences
Overview

○ Restartable Sequence (rseq) is a Linux system call 
implemented by EfficiOS,

○ Allow fast per-CPU operations in user space,
○ End goal is to eliminate atomic operations from the user 

space tracer’s fast-path,
○ Useful for other use-cases (e.g. memory allocators),
○ Merged in Linux 4.18.

Recent news:
○ Google added support in membarrier system call for a 

“rseq fence” to abort pre-existing rseq critication sections 
(Linux 5.10, see MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).

○ Google tcmalloc started using rseq system call, allowing 
them to use per-cpu memory pools rather than per-thread.

13



Restartable Sequences

Ongoing:
○ Integration of rseq into the GNU C Library. Almost merged for 

glibc 2.32, but will require exposing a new extensible Linux rseq 
ABI before we can agree on an implementation.

Still working on the missing pieces for LTTng-UST integration:
○ Missing Linux kernel feature allowing modification of per-cpu user 

space data from remote CPUs safely against concurrent 
CPU-hotplug and cgroup cpuset configuration changes, without 
hurting partitioned latency-sensitive workloads.

14



LTTng-modules Upstreaming

Multiple attempts have been made to get the project merged in 
upstream Linux.

According to Linux tracing maintainer Steven Rostedt:
○ Proposed changes must be presented in a way which shows 

their possible usefulness to other tracers,
○ Identified LTTng system call tracing (with arguments) as an 

initial feature which would be a differentiator justifying the 
LTTng ABI,

○ EfficiOS started the work to allow page faults in system call 
entry/exit tracepoints.

Initial lttng-modules for upstream would likely be a “redux” version of 
the kernel tracer featuring initially only system call entry/exit tracing.

15



Questions?

16


