
GDB as a versatile
instrumentation server

1

09-12-19 Paul NAERT
Pr Michel DAGENAIS

Summary

❏ Introduction
❏ What do I mean by instrumentation server ?
❏ Why use GDB for this purpose ?
❏ Expanding a tool with GDB

❏ Dynamic instrumentation with GDB

❏ Use cases
❏ Dynamic C/C++ tracing
❏ Memory analysis

❏ Other work

2

GDB as a service

3

Language
Server

GDB

user

Editor

LSP

Why go through GDB ?

● Client/Server architecture
● Attaching and detaching capabilities
● DWARF debug information integration
● Python interface
● Signal interception and handling
● Inferior function calling
● Dynamic library loading
● Compiling code in the inferior scope -> access to local variables

● Dynamic instrumentation
Not upstream yet

4

Expanding the capabilities of current
tools

5

Expanding a tool with GDB

Tool 1:

A memory checking library that
monitors malloc and free and checks
for memory leaks at the end of the
program execution.

Process 1:

A long running process that sometimes
crashes because it runs out of memory.

6

Tool1

process 1

GDB

Expanding a tool with GDB

attach to the
process

7

process 1

Tool1

load library

call library
analysis
function detach

Tool 1 output

unload library

Expanding a tool with GDB

Tool 2:

A memory checking library that checks
for memory corruption by instrumenting
memory accesses.

Process 2:

A long running process that produces
invalid output due to memory
corruption because of recent
modifications.

8

Tool2

process 2

GDB

Expanding a tool with GDB

attach to the
process

9

process 1

Tool1

load library

instrument the
recent parts of
the code detach

unload library

remove the
instrumentation

Tool 2 output

Dynamic instrumentation with GDB

10

Dynamic code patching

?

Compiled binary

C code snippet

11

GDB

Dynamic code patching

Compiled snippet

Compiled binary

12

Dynamic code patching : x64 implementation

Patching code at instruction 2 :

A1 A2 A3 A4 B1 B2 B3 B4 B5 C1 C2 C3

Instruction 1 Instruction 2 Instruction 3

13

Dynamic code patching : x64 implementation

Patching code at instruction 2 :

Replace whole instruction with a jump :

A1 A2 A3 A4 B1 B2 B3 B4 B5 C1 C2 C3

Instruction 1 Instruction 2 Instruction 3

A1 A2 A3 A4 e9 Off
st

Off
st

Off
st

Off
st

C1 C2 C3

Instruction 1 Jump Instruction Instruction 3

14

Dynamic code patching : x64 implementation

Patching code at instruction 1 :

Putting a 5 byte jump corrupts Instruction 2.

A1 A2 A3 A4 B1 B2 B3 B4 B5 C1 C2 C3

Instruction 1 Instruction 2 Instruction 3

15

Dynamic code patching : x64 implementation

Patching code at instruction 1 :
Replace B1 with an illegal instruction, which is also part of the offset.
-> Need to be able to map pages at arbitrary locations

A1 A2 A3 A4 B1 B2 B3 B4 B5 C1 C2 C3

Instruction 1 Instruction 2 Instruction 3

e9 Off
st

Off
st

Off
st

ILL No
p

No
p

No
p

No
p

C1 C2 C3

Jump Instruction Illegal instruction Instruction 3

16

GDB

JMP

Patching short instructions

ILL

17

Patching short instructions

● around 60% of instructions are
shorter than 5 bytes

● Virtually every address is now
instrumentable

https://www.strchr.com/x86_machine_code_statistics

18

https://www.strchr.com/x86_machine_code_statistics

Instrumentation Performance on x64

● About 100 instructions overhead - 55ns on i7-4790 per instrumentation
location

● Insertion time : 27ms per instrumentation location

● For reference :

- getpid() system call : 350 - 1000ns per call.
- breakpoint : 0.5 - 1ms to stop and resume the inferior

19

Examples of use cases

20

Dynamic C/C++ tracing

?

?

?

● Information about a process execution

● Existing solutions
○ Static (e.g. LTTng)
○ Slow (e.g. GDB breakpoints)
○ Limited (e.g. DynTrace)

21

Dynamic C/C++ tracing

85ns average
overhead per
tracepoint

30-40ns
average
overhead
compared to
compile-time
tracing

Tracing overhead on a simple program

22

23

Memory analysis : a user-space only Data Watch

1. Override malloc() and free()
malloc() now adds information in
the most significant bits of the
address, and stores what has
been allocated and where.

2. Each pointer resolution now
raises a segmentation fault,
which is handled by DataWatch. If
the dereference is within bounds,
it corrects the address and sends
back the value.

Program libc

DataWatch

b = a[4]

SegFault

User Space

DataWatch
Handler

23

24

Memory analysis : a user-space only Data Watch

1. Override malloc() and free()
malloc() now adds information in
the most significant bits of the
address, and stores what has
been allocated and where.

2. The first memory access will
cause a Segfault, and GDB
patches that instruction so that
subsequent calls will not
generate a signal.
The resolution is corrected in the
program without any transition to
kernel space.

Program libc

DataWatch

b = a[4]

User Space

In-program
Handler

24

Memory analysis : a user-space only Data Watch

Advantages :

1. Can benefit from GDB’s client/server
architecture

2. It can target only a specific part of a
program.

3. Can be attached to a running binary,
although it will not check already allocated
memory.

4. Can work in conjunction with Data Watch if
pointers are shared outside of the targeted
area.
needs a Kernel module

Limitations :

1. Overhead can be significant in libc : giving
an invalid address to strcpy will cause a
large number of illegal instructions to be
hit.

2. No complete override of malloc and free :
memory allocated outside of the target
range will not be checked.

3. No verification for data allocated on the
stack.

4. Issues with system calls and ioctl without a
kernel module.

25

Memory analysis : a dynamic Address Sanitizer

Regular compiling

CODE COMPILER BINARY

26

Memory analysis : a dynamic Address Sanitizer

Compile-time Address Sanitizer

CODE COMPILER INSTRUMENTED
BINARY

LIBASAN

LIBASAN

-fsanitize

27

Memory analysis : a dynamic Address Sanitizer

Dynamic Address Sanitizer

BINARY

GDB

INSTRUMENTED
INFERIOR

LIBASAN

28

29

Memory analysis : a dynamic Address Sanitizer

Advantages :

1. No need to have the binary
recompiled

2. Can be turned on and off
dynamically

3. Can target specific files or lines

Limitations :

1. Can only check for heap faults

2. Needs access to source files

3. It may not be possible to attach it
to a running process

Work in progress

30

EDITOR GDB

A modular platform for instrumentation

LIB INFERIOR
user

PKG

31

Other work

Integrating the patch functionality to GDB upstream

● Two commands : patch and patch asm

Dynamic tracing using lttng
Looking for input on that !

● Preliminary work by Didier Nadeau : is this still relevant?

32

Questions ?

33

Language
Server

GDB

user

Editor

LSP

