GDB as a service

06-05-19 Paul NAERT
Pr Michel DAGENAIS

Summary

A Introduction
A Whatis GDB ?
A The Language Server Protocol

A GDB as a ‘binary execution server’

A Applications

A Dynamic C/C++ tracing
A Memory analysis

A Conclusion

Introduction

What does the GNU Debugger do?

Observe what is going on during a program execution.

e [Execute a program line by line

e Display variable and register values

e Set breakpoints

The Language Server Protocol

NO LSP LSP

JS 3] s]

. hover T .
P piray P v
: - : formatting
definition
e - L ¢ <
LI

|

lllustration from VSCode website

GDB as a ‘binary execution server’

GDB as a service

I LSP

Editor

Language
Server 7

Dynamic code insertion

Dynamic code insertion

Applications

Dynamic C/C++ tracing

e Information about a process execution

e Existing solutions

o Static (e.g.LTTnQ)
o Slow (e.g. GDB breakpoints)
o Limited (e.g. DynTrace)

1

Dynamic C/C++ tracing : editor integration

https://www.google.com/url?q=http://www.youtube.com/watch?v%3Dg9xqa9OQPS0&sa=D&ust=1557184838258000&usg=AFQjCNFvebEJjw-jekF03yZ0uNeCAZHaHA

Dynamic C/C++ tracing

Tracing overhead on a simple program

1000000 - 8bns average
overhead per
100000 tracepoint
10000 - ; , !
i 30ns average
£ 1000 |
5 overhead
i compared to
100 - . .
compile-time
w— native .
tracing
1041 ' traced in gdb
/ == breakpoint/watchpoint
. - « Compile-time tracing
X i T T T T i
1 10 100 1000 10000 100000 1000000

number of loop iterations (i.e tracepoints hit)

13

Memory leak and corruption analysis

e Allocated memory is never freed

e Memory is corrupted due to out of bounds access (buffer overflow ...)

e Tools exist : Valgrind, Address Sanitizer, Data Watch ... but they are slow or
they need the binary recompiled.

14

Memory analysis : a user-space only Data Watch

1. Override malloc() and free()
malloc() now adds information in the most Program . ‘ libc
significant bits of the address, and stores

what has been allocated and where.

DataWatch

2. Each pointer resolution now raises a
segmentation fault, which is handled by
DataWatch. If the deallocation is within
bounds, it corrects the address and sends
back the value.

DataWatch
Handler

User Space

15

Memory analysis : a user-space only Data Watch

1. Impersonates libc to override malloc() and
free() Program ‘ ‘ l libc
malloc() now adds information in the most

significant bits of the address, and stores
what has been allocated and where.

DataWatch

In-program

Handler

The resolution is corrected in the program

without any transition to kernel space. User Space

16

A first prototype

1. Preload the library using LD_PRELOAD
and insert initialization function at the start

callg 0x401070 <malloc@plt>

of the program.

2. Run the source file through the clang to get movabs $OX7ffff7ff21b7,%rax
the AST dump jmpq *%rax <malloc_wrappers

3. Inthe AST find calls to malloc and free and
replace the call addresses in the binary
using GDB.

4. Using the AST, find all pointer dereferences
(*, [], =), and insert a call to the library to
check and correct the pointer address.

(long)memory access(*(long*)memory access(array+j)+i) = 1;

17

A first prototype

Pros :

1. It should be faster than vanilla DataWatch,
as it does not involve switching to kernel
space.

This has yet to be verified

2. It cantarget only a specific part of a
program.

3. Can work in conjunction with Data Watch if
pointers are shared outside of the targeted
area.

4. Can be attached to a running binary,
although it will not check already allocated
memory.

Not yet implemented

Cons:

You need the debug symbols for the binary
and you must have the source code for the
parts being instrumented.

GDB overhead
No complete override of malloc and free :
memory allocated outside of the target

range will not be checked.

| was not able to handle some C syntax
(*pt++ for instance)

No verification for data allocated on the
stack.

18

Conclusion

GDB can be more than a debugger via integration with text editors

Applications include :
Dynamic low-cost tracing

Efficient and targeted memory analysis

19

Questions ?

*%

Editor N

Language
Server 20

