
GDB as a service

06-05-19 Paul NAERT
Pr Michel DAGENAIS

1

Summary

❏ Introduction
❏ What is GDB ?
❏ The Language Server Protocol

❏ GDB as a ‘binary execution server’

❏ Applications
❏ Dynamic C/C++ tracing
❏ Memory analysis

❏ Conclusion

2

Introduction

3

Observe what is going on during a program execution.

● Execute a program line by line

● Display variable and register values

● Set breakpoints

What does the GNU Debugger do?

4

The Language Server Protocol

5
Illustration from VSCode website

GDB as a ‘binary execution server’

6

GDB as a service

7

Language
Server

GDB

user

Editor

LSP

Dynamic code insertion

8

?

GDB

9

Dynamic code insertion

Applications

10

Dynamic C/C++ tracing

11

?

?

?

● Information about a process execution

● Existing solutions
○ Static (e.g. LTTng)
○ Slow (e.g. GDB breakpoints)
○ Limited (e.g. DynTrace)

Dynamic C/C++ tracing : editor integration

12

https://www.google.com/url?q=http://www.youtube.com/watch?v%3Dg9xqa9OQPS0&sa=D&ust=1557184838258000&usg=AFQjCNFvebEJjw-jekF03yZ0uNeCAZHaHA

Dynamic C/C++ tracing

85ns average
overhead per
tracepoint

30ns average
overhead
compared to
compile-time
tracing

13

Tracing overhead on a simple program

Memory leak and corruption analysis

● Allocated memory is never freed

● Memory is corrupted due to out of bounds access (buffer overflow ...)

● Tools exist : Valgrind, Address Sanitizer, Data Watch … but they are slow or
they need the binary recompiled.

14

Memory analysis : a user-space only Data Watch

1. Override malloc() and free()
malloc() now adds information in the most
significant bits of the address, and stores
what has been allocated and where.

2. Each pointer resolution now raises a
segmentation fault, which is handled by
DataWatch. If the deallocation is within
bounds, it corrects the address and sends
back the value.

15

Program libc

DataWatch

b = a[4]

SegFault

User Space

DataWatch
Handler

Memory analysis : a user-space only Data Watch

1. Impersonates libc to override malloc() and
free()
malloc() now adds information in the most
significant bits of the address, and stores
what has been allocated and where.

2. Each pointer resolution now raises a
segmentation fault, which is handled by
DataWatch. If the deallocation is within
bounds, it corrects the address and sends
back the value.
The resolution is corrected in the program
without any transition to kernel space.

16

Program libc

DataWatch

b = a[4]

User Space

In-program
Handler

A first prototype

1. Preload the library using LD_PRELOAD
and insert initialization function at the start
of the program.

2. Run the source file through the clang to get
the AST dump.

3. In the AST find calls to malloc and free and
replace the call addresses in the binary
using GDB.

4. Using the AST, find all pointer dereferences
(*, [], ->), and insert a call to the library to
check and correct the pointer address.

callq 0x401070 <malloc@plt>

17

movabs $0x7ffff7ff21b7,%rax
jmpq *%rax <malloc_wrapper>

4.

3.

A first prototype

Pros :

1. It should be faster than vanilla DataWatch,
as it does not involve switching to kernel
space.
This has yet to be verified

2. It can target only a specific part of a
program.

3. Can work in conjunction with Data Watch if
pointers are shared outside of the targeted
area.

4. Can be attached to a running binary,
although it will not check already allocated
memory.
Not yet implemented

Cons :

1. You need the debug symbols for the binary
and you must have the source code for the
parts being instrumented.

2. GDB overhead

3. No complete override of malloc and free :
memory allocated outside of the target
range will not be checked.

4. I was not able to handle some C syntax
(*p++ for instance)

5. No verification for data allocated on the
stack.

18

Conclusion

GDB can be more than a debugger via integration with text editors

Applications include :

Dynamic low-cost tracing

Efficient and targeted memory analysis

19

Questions ?

20

Language
Server

GDB

user

Editor

