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Bug Tracking System

● Manual checking
● Time and money consuming
● Large user base project: Firefox ~300 new 

reports per day
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Objective

● Increase software quality and save resource
○ Decrease triage team overload
○ Avoid two or more developers fixing the same bug
○ Avoid to fix a bug already solved
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Duplicate bug report detection

● Detect whether a bug is duplicate or not
● Master set

○ Master report
○ Duplicate reports
○ Every report is in a master set

● Three approaches
○ Decision-making approach
○ Binary classification approach
○ Ranking approach
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Decision-making approach

● Pairs of bug reports (Training and Evaluation)
● Drawbacks

○ Too Easy
○ High probability to create easy non-duplicate pairs
○ Far from the real scenario

■ Compare new bug with a set of bugs in the dataset
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● Automatic prediction of the report as duplicate or not
○ General information extracted from the database and the new bug reports

● False negative can have a great impact
● Really difficult task

Binary classification approach
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Ranking approach

● Recommend a similarity list
● A person check the list and label the report as duplicate or not

○ Decrease the decision time
● The most used approach in the literature
● Metric: Recall Rate

○ Rate of reports whose the lists have at least one bug report from the same 
master set
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Ranking approach

● Two methodologies: Deshmukh et al. 2017 and Sun et al. 2011
● Deshmukh et al. 2017

○ Training, validation and test datasets are randomly generated
○ Evaluation: similarity list are created using bug from the test dataset
○ Unrealistic scenario
○ It makes the problem easier

■ Decrease number of comparisons
■ Concept Drift mitigation

● Sun et al. 2011
○ Reports are sorted by creation date
○ Training, validation and test are generate by period of time
○ New bug report is compared with all previous bug reports
○ More realistic scenario
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Our Solution

● Ranking approach + Sun’s Methodology
● Only textual data

○ Summary and description
● Baseline: TF-IDF
● Model: Word Embeddings + Convolution Neural Network
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TF-IDF
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Term Value
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creation w4
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TF-IDF
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Represent word as vector

● Word Embedding
○ Dense vectors with real numbers
○ More compact representation
○ Semantic and syntactic information
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Word Representation

adapter [0.5, 0.6]

broken [0.3, 0.2]

gets [0.1, 0.7]

creation [0.6, 0.3]
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Convolution Neural Network for NLP
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Our Deep Learning Model
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● Encoder
○ Represent the report as vector
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Our Deep Learning Model

31



POLYTECHNIQUE MONTREAL – Irving Muller Rodrigues

Our Deep Learning Model
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Cross Entropy

 y × log(P(D)) + (1 - y) log(1 - P(D))
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Preliminar Results
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Model Top-5 Top-10 Top-15 Top-20

TF-IDF 44.80% 51.27% 54.97% 57.88%

DL Model 37.11% 43.95% 48.61% 52.03%
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Our Deep Learning Model

● Challenge:
○ Generate relevant non-duplicate pairs (negative) can be difficult
○ Most non-duplicate pairs are easy
○ ~ n2 different combinations
○ n = 174,002  ⇨ n2 ≅ 30 x 109 

● Solution: Random subsample negative examples each epoch
○ Constraint: loss has to be greater than 0
○ Keep rate between positive and negative examples
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Model Top-5 Top-10 Top-15 Top-20

TF-IDF 44.80% 51.27% 54.97% 57.88%

DL Model 37.11% 43.95% 48.61% 52.03%

DL Model - subsampling by epoch 44.02% 51.03% 55.49% 58.43%
6.40%
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Future Work

● Bottleneck: select negative pairs
○ Try different approaches

● Encoder receives information from the first bug
○ Attention

● Combine different information sources
○ Categorical information, stack trace, tracing

● Use our solution to help our partners
○ Partner data
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Thank you for your attention!
Questions?

38

Irving Muller Rodrigues
irving.muller-rodrigues@polymtl.ca
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Represent word as vector

● One hot encoding
○ Binary Vectors
○ Vector Size = Vocabulary Size
○ Curse of Dimensionality
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Word Representation

adapter [1,0,0,0]

broken [0,1,0,0]

gets [0,0,1,0]

creation [0,0,0,1]
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TF-IDF
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