
Dynamic Tracing
(uftrace & dyntrace)

Anas balboul Ahmad shahnejat
December, 6

OUTLINE
● INTRODUCTION
● PREVIOUS WORK
● Dyntrace Improvement

○ DEPENDENCY REMOVAL
○ Cmake to Autotools

● DEMO
● FUTURE WORK

Introduction
● dyntrace:

-Userspace dynamic tracing tool

-Implements a fast tracepoint insertion for x86(_64) ecosystem on Linux

● Boost_library:
-A C++ library which contains over

80 individual libraries.

-Provides support for multithreading,

image processing, regular expressions, unit testing...

dyntrace

Command line

Dyntrace daemon
Target process

libdyntrace-agent.so

libdyntrace-fasttp.so

lttng.so

Boost_command.sock

Boost_process.sock

Ask to trace

load
-dynamic ins/rmv
of tps using jmps
-shared lib

-manages tracepoint
-Injection
-Routing
-Gathering info

-control tps
-rec cmd
-thread is waiting 24/7
-No extern intervention

-ld by agent @
Tp creation
-Invoked @ tp exec
-access 2 func args,
ret vals & vars
-Easy 2 add new tracer
-Decoupled tracing ctrl & Exec

dyntrace

Function Tracing

1: jmp

2: jmp Function

Entry
1: jmp

2: jmp

Exit
3: ret

4: jmp

Kernel space

User space

boost_library

Boost

Dyntrace Clean up
● Boost uses lots of templates!

● Embedded developers && modern subset of c++!

● The advanced C++ techniques && old platforms!

● General purpose library && specific needs!

● Compile time && boost #includes!

Dyntrace Clean up
● It is usually not worth transitioning away

from the in-house library of functionality!

It would be a major porting effort that

would destabilize a lot of code.

● Complexity && readability!

● Slow performance!

● Cmake --> Autotools!

boost Linux call

Demo

demo

https://docs.google.com/file/d/1fZFW7uvEQ52c1bM3nfdOfphDHfYX25gI/preview

Future worK

uFtrace integration

Command-line

uFtrace daemon

Target process
libmcount-agent.so

libdyntrace-fasttp.so

lttng.so

command.sock

Pipe && shared memory

Ask to trace in
your format

Ask to trace in
CTF

load

Insertion performance

Tool Time(μs)

Dyntrace 28,6

DynInst 9’434,0

Uprobe (in kernel 4.16.14) 25,0

Execution performance(1-thread)

Tool Execution time(ns)

Dyntrace “Point” 178

Dyntrace “Entry-Exit” 360

Uprobe “Point” 1’933

Uprobe “Entry-Exit” 2’650

Outline

● Introduction

○ fasttp library

○ uftrace

● Contribution

● Future work

uftrace

● Userspace tracing tool.

● Mainly static tracepoints. (-pg, recompiling)

● Supports dynamic tracing. (-mnop-mcount)

● Cannot attach and trace a target process. (forks and exec)

Fasttp(fast_tracepoint)

● Dynamic tracepoint. (run time insertion, no recompilation needed)

● Limited number of inserted tracepoints.

● Uses a combination of jump and trap instructions.

I1

I2 I3 I4

0 2 8 1612

I5

9

int

Fasttp(fast_tracepoint)

● Faster than the trap based trace point.

I1 I2

I3 I4

0 2 8 1612
I5

9
jmp

E9 ?? ?? ??CC

int

● Production-ready and stability.

● Support for special cases:

○ inusual instructions.

○ Tracepoints in recursive and nested cases.

● Made the caller function’s address available in the tracepoint

handler.

Contribution(FASTtp)

Contribution(uftrace)

● Integrated and adapted fasttp to uftrace (most the features are

integrated too).

● Uftrace can insert fasttp tracepoints (no need for re…) .

● No compiler/linker flags needed anymore.

Future WORK
● fasttp

○ powerPC or ARM64 support.

○ surpass number of tracepoints limitation.

○ more stability.

● Uftrace

○ attach and trace a running process.

○ output in CTF trough LTTng.

Demo

DEMO

https://docs.google.com/file/d/1xjWAcrxNL18QpN9xY0FxTt-N4GWSGCza/preview

DEMO

https://docs.google.com/file/d/1tEO3kbSNAtxPOzOlEvaMIhPVdpZ2-5cz/preview

