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Introduction

Why tracing a GPU program(Kernel) ?

*We all know the importance of tracing ...

*Many solutions exist to trace a GPU.

*Most of this solution trace the framework for writing programs that execute
across heterogeneous platforms (Like OpenCL, HSA, Cuda).

*The need of a way to trace the kernel execution on a lower level.



Introduction

Definition of the problem

*Because AMD’s tools are open source we choose to work with their tools
and their hardware.

*Here is an example of a GPU program traced using CodeXL
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Introduction

Why tracing kernel from within the GPU is important:

*Here is an example of a kernel that copy a buffer ‘in’ into a buffer ‘out’ :

prog kernel &_ wvector_copy_kernel(
kernarg_ufd %in,

kernarg_ufd ¥out)

1

@__vector_copy_kernel_entry:
S/ BB#@: ff %entry
workitemabsid_u32 is@, ©;
cvt_sfd_s32 3de, $s0;
shl_utd $d@, ido, 2;
ld_kernarg_align(8)_width(all)_uf4 $d1l, [%out];
add_ubd 3$dl, %dl, %do;
ld_kernarg_align(8)_width(all)_uf4 $d2, [%in];

add_utd $d@, $d2, %do;
ld_global_u32 $s0, [$d@];
st_global_u32 $s@, [%dl];
ret;

b



Literature review

« Paul Margheritta, Michel R. Dagenais : (Tracing of software
applications that uses a GPU)

. LTTNG-HSA: set of libraries that are meant to be preloaded when
executing a GPU-accelerated program.

. Each library hook into the HSA API calls and insert an LTTng
tracepoint.

. Using GPU performance API to collect some performance counters
from the GPU.

-Unify all the traces in one CTF trace using merging and sorting
techniques.



AMD GCN3 Instruction Set

. Some instructions of AMD GCNS3 Instruction Set Architecture that

can be used to collect informations :

Instruction S MEMTIME

Description Return current 64-bit timestamp.This “time” is a free-running clock counter based on the
shader core clock.

Microcode SMEM Opcode 36 (0x24)

Instruction S _TRAP

Description Enter the trap handler. TraplD = SIMM16([7:0]. Wait for all instructions to complete, save
{pc_rewind, traplD,pc} into ttmp0,1; load TBA into PC, set PRIV=1 and continue. A traplD of
zero is not allowed.

Microcode SOPP Opcode 18 (0x12)

1(0|1(1]|1(1]1]1(1 oP SIMM +0




AMD GCN3 Instruction Set

. Some status registers of AMD GCN3 Instruction Set Architecture

that can be used to collect informations :

IN_TG 11 Wavefront is a member of a work-group of more than one wavefront.

IN_BARRIER 12  [Wavefront is waiting at a barrier.

HALT 13 [Wavefront is halted or scheduled to halt.
HALT can be set by the host through wavefront-control messages, or by the shader.
This bit is ignored while in the trap handler (PRIV = 1); it also is ignored if a host-
initiated trap is received (request to enter the trap handler).

TRAP 14 Wavefront is flagged to enter the trap handler as soon as possible.




Future Work

» Tracing and doing more experiences to have a better understanding about
the execution of a kernel in a low level using HSA framework.

« Developing new techniques and exploring already existing ones to collect
low level information during the execution of a kernel.

« Overcoming performance problems and obstacles that will be induced by
the nature of parallel programs.



Questions?
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