Tracing from within GPU

Balboul anas Michel Dagenais
May 10, 2018

Polytechnique Montréal

Laboratoire DORSAL

Agenda

e Introduction

e Literature review

e AMD GCN3 Instruction Set
o Future Work

e Conclusion

Introduction

Why tracing a GPU program(Kernel) ?

*We all know the importance of tracing ...

*Many solutions exist to trace a GPU.

*Most of this solution trace the framework for writing programs that execute
across heterogeneous platforms (Like OpenCL, HSA, Cuda).

*The need of a way to trace the kernel execution on a lower level.

Introduction

Definition of the problem

*Because AMD’s tools are open source we choose to work with their tools
and their hardware.

*Here is an example of a GPU program traced using CodeXL

=

BitonicSort_Trace (Imported) (Application Timeline Trace) X ‘

Application Timeline Trace ‘

T I T
13.991 | | | | | | | | |
13.892 13.928 13.963 13.998 14.034 14.069 14.105 14140 14.176 14211 14247 14.282 14.318

[=1 Host
=l Host Thread 2858

HSA hsa_signal_create 1emory_a!| hsa_signal_wait_acquire m hsa_signal_create 1emory_all hsa_signal_wait_acquire

ZIHSA

Fiji &_OpenCL_bitonicSort_kernel penCL_bitonicSort k

7

Host Thread 2858 | Summary ‘

| HSA Kernel Summary v |

Kernel Name

Device Name # of Calls Total Time(ms) % of Total Time Avg Time(ms) Max Time(ms) Min Time(ms)

&_OpenCL_bitonicSort_kernel | Fiji 120 8.10181 100.00 0.06751 0.13520 l 0.03392

Introduction

Why tracing kernel from within the GPU is important:

*Here is an example of a kernel that copy a buffer ‘in’ into a buffer ‘out’ :

prog kernel &_ wvector_copy_kernel(
kernarg_ufd %in,

kernarg_ufd ¥out)

1

@__vector_copy_kernel_entry:
S/ BB#@: ff %entry
workitemabsid_u32 is@, ©;
cvt_sfd_s32 3de, $s0;
shl_utd $d@, ido, 2;
ld_kernarg_align(8)_width(all)_uf4 $d1l, [%out];
add_ubd 3$dl, %dl, %do;
ld_kernarg_align(8)_width(all)_uf4 $d2, [%in];

add_utd $d@, $d2, %do;
ld_global_u32 $s0, [$d@];
st_global_u32 $s@, [%dl];
ret;

b

Literature review

« Paul Margheritta, Michel R. Dagenais : (Tracing of software
applications that uses a GPU)

. LTTNG-HSA: set of libraries that are meant to be preloaded when
executing a GPU-accelerated program.

. Each library hook into the HSA API calls and insert an LTTng
tracepoint.

. Using GPU performance API to collect some performance counters
from the GPU.

-Unify all the traces in one CTF trace using merging and sorting
techniques.

AMD GCN3 Instruction Set

. Some instructions of AMD GCNS3 Instruction Set Architecture that

can be used to collect informations :

Instruction S MEMTIME

Description Return current 64-bit timestamp.This “time” is a free-running clock counter based on the
shader core clock.

Microcode SMEM Opcode 36 (0x24)

Instruction S _TRAP

Description Enter the trap handler. TraplD = SIMM16([7:0]. Wait for all instructions to complete, save
{pc_rewind, traplD,pc} into ttmp0,1; load TBA into PC, set PRIV=1 and continue. A traplD of
zero is not allowed.

Microcode SOPP Opcode 18 (0x12)

1(0|1(1]|1(1]1]1(1 oP SIMM +0

AMD GCN3 Instruction Set

. Some status registers of AMD GCN3 Instruction Set Architecture

that can be used to collect informations :

IN_TG 11 Wavefront is a member of a work-group of more than one wavefront.

IN_BARRIER 12 [Wavefront is waiting at a barrier.

HALT 13 [Wavefront is halted or scheduled to halt.
HALT can be set by the host through wavefront-control messages, or by the shader.
This bit is ignored while in the trap handler (PRIV = 1); it also is ignored if a host-
initiated trap is received (request to enter the trap handler).

TRAP 14 Wavefront is flagged to enter the trap handler as soon as possible.

Future Work

» Tracing and doing more experiences to have a better understanding about
the execution of a kernel in a low level using HSA framework.

« Developing new techniques and exploring already existing ones to collect
low level information during the execution of a kernel.

« Overcoming performance problems and obstacles that will be induced by
the nature of parallel programs.

Questions?

References

* Paul M., & Dagenais, M. R. (2018). : LTTNG-HSA: BRINGING LTTNG
TRACING TO HSA-BASED GPU RUNTIMES

