
Interactive Runtime
Verification using a GDB
based architecture

1

08-05-2020 Paul NAERT
Pr Michel DAGENAIS

Summary

❏ Runtime Verification

❏ A GDB-based Architecture for RV

❏ Dynamic instrumentation with GDB

❏ Use cases
❏ Address Sanitizer
❏ Data Watch
❏ Dynamic C/C++ tracing

2

Runtime Verification

3

Runtime Verification : Memory analysis

4

Valgrind Memcheck
Heap and stack analysis for data
corruption, use after free,
leaks and use of uninitialized
memory

● Fully dynamic

● Significant slowdown
(10~100x)

● Instruments all the program

● Cannot attach at runtime

● Command line interface

Address Sanitizer
Heap and stack analysis for data
corruption, use after free and leak
detection (using Leak Sanitizer)

● Compile-time instrumentation

● Limited slowdown (~2x)

● Instruments all the program

● Cannot attach at runtime

● Command line interface

A GDB-based Architecture for RV

5

What do current tools lack ?

Features missing

● Targeted instrumentation

● Efficient dynamic instrumentation

● IDE integration

● Attaching to a running program

6

Features of GDB

● Injection of code at precise locations
through breakpoints

● Breakpoints are very slow

● IDE communication through GDB MI
and the Debug Adapter Protocol

● GDB also offers a client-server
architecture through gdbserver

Binary Level

GDB

Our Interactive RV architecture

7

Source Level

RV Libraries

user

IDE

IRV Package

IRV module

Language Server

Program Binary

Source code

Instrumentation

RV
pilot
script

Dynamic instrumentation with GDB

8

Dynamic code patching

?

Compiled binary

C code snippet

9

GDB

Dynamic code patching

Compiled snippet

Compiled binary

10

Dynamic code patching - detailed

11

jump

save regs

call

restore regs

relocated code

jump

Trampoline

Instrumentation
code

return

Probe
function

Program
code

GDB

JMP

Patching short instructions on x86_64

ILL

12

Patching short instructions

● around 60% of instructions are
shorter than 5 bytes

● Virtually every address is
instrumentable

https://www.strchr.com/x86_machine_code_statistics

13

https://www.strchr.com/x86_machine_code_statistics

Instrumentation Performance on x64

14

Instrumentation and runtime overhead of a procedure counter on different applications of the SPEC suite, relative to
uninstrumented execution time.

Average probe execution time is 50ns, or about 200 CPU cycles

Memory overhead of the procedure counter

Use cases

15

Expanding a tool with our framework

Tool 1:

A memory checking library that
monitors malloc and free and checks
for memory leaks at the end of the
program execution.

Process 1:

A long running process that sometimes
crashes because it runs out of memory.

16

Tool1

process 1

GDB

Expanding a tool with our framework

attach to the
process

17

process 1

Tool1

load library

call library
analysis
function detach

Tool 1 output

unload library

Dynamic Targeted Address Sanitizer

Compile-time Address Sanitizer

CODE COMPILER INSTRUMENTED
BINARY

LIBASAN

LIBASAN

-fsanitize

18

Binary Level

GDB

Dynamic Targeted Address Sanitizer

19

Source Level

libasan.so

user

IDE

Targeted
ASan Package

IRV module

Language Server

Program Binary

Targeted
source
 files

Instrumentation
of memory accesses

T.ASan
pilot
script

Find mem
accesses

20

User-space only Data Watch

1. Override malloc() and free().
malloc() now adds information in
the most significant bits of the
address, and stores what has
been allocated and where.

2. Each pointer resolution now
raises a segmentation fault,
which is handled by DataWatch. If
the dereference is within bounds,
it corrects the address and sends
back the value.

Program libc

DataWatch

b = a[4]

SegFault

User Space

DataWatch
Handler

20

21

User-space only Data Watch

1. Override malloc() and free().
malloc() now adds information in
the most significant bits of the
address, and stores what has
been allocated and where.

2. The first memory access will
cause a Segfault, and GDB
patches that instruction so that
subsequent calls will not
generate a signal.
The resolution is corrected in the
program without any transition to
kernel space.

Program libc

DataWatch

b = a[4]

User Space

In-program
Handler

21

User-space only Data Watch

22

jump

save regs

call

restore regs

access addr

jump

Trampoline

check access
at addr

return

Memory check
Instrumented

code

access addr

Original
code

(a) (b)

User-space only Data Watch

Advantages :

1. Can benefit from GDB’s client/server
architecture

2. It can target only a specific part of a
program.

3. Can be attached to a running binary,
although it will not check already allocated
memory.

4. Can work in conjunction with Data Watch if
pointers are shared outside of the targeted
area.
This would need a Kernel module

Limitations :

1. Overhead can be significant in libc : giving
an invalid address to strcpy will cause a
large number of illegal instructions to be
hit.

2. No complete override of malloc and free :
memory allocated outside of the target
range will not be checked.

3. No verification for data allocated on the
stack.

4. Issues with system calls and ioctl without a
kernel module.

23

Dynamic C/C++ tracing

?

?

?

● Information about a process execution

● Existing solutions
○ Compile-time (e.g. LTTng)
○ Slow (e.g. GDB breakpoints)
○ Limited (e.g. DynTrace)

24

Dynamic C/C++ tracing

25

Using the minitrace library :

85ns average overhead per tracepoint

30-40ns average overhead compared to compile-time tracing

Binary Level

GDB

Source Level

Tracing
library/runtime

user

IDE

Tracer
descriptor

Tracing
module

Language Server

Program Binary

Targeted
source
 files

Injected
tracepoint

Tracing
injection
script

Find all
occurrences

Binary Level

GDB

Conclusion

26

Source Level

RV Libraries

user

IDE

IRV Package

IRV module

Language Server

Program Binary

Source code

Instrumentation

RV
pilot
script

