Interactive Runtime
Verification using a GDB
based architecture

08-05-2020 Paul NAERT
Pr Michel DAGENAIS

Summary

A Runtime Verification

1 A GDB-based Architecture for RV

A Dynamic instrumentation with GDB

A Use cases

(A Address Sanitizer
(d Data Watch
A Dynamic C/C++ tracing

Runtime Verification

Runtime Verification : Memory analysis

Heap and stack analysis for data
corruption, use after free,

leaks and use of uninitialized
memory

Valgrind Memcheck

Fully dynamic
Significant slowdown
(10~100x)

Instruments all the program

Cannot attach at runtime

Command line interface

/

Heap and stack analysis for data
corruption, use after free and leak
detection (using Leak Sanitizer)

Address Sanitizer

Compile-time instrumentation

Limited slowdown (~2x)

Instruments all the program

Cannot attach at runtime

Command line interface

/

A GDB-based Architecture for RV

What do current tools lack ?

Features missing Features of GDB

e Targeted instrumentation « Injection of code at precise locations
through breakpoints

e Efficient dynamic instrumentation x Breakpoints are very slow

e IDE integration « IDE communication through GDB MI
and the Debug Adapter Protocol

e Attaching to a running program “ GDB also offers a client-server
architecture through gdbserver

Our Interactive RV architecture

-

user

IRV Package

Source code

Source Level

Language Server

Binary Level

Dynamic instrumentation with GDB

Dynamic code patching

‘ % B

Compiled binary

Dynamic code patching

Compiled binary

GDB

Compiled snippet

10

Dynamic code patching - detailed

save regs

call Instrumentation

code

jump restore regs ‘\
return

‘\ relocated code
jump

Program Tramooline Probe
code P function

1

Patching short instructions on x86_64

12

Patching short instructions

e around 60% of instructions are
shorter than 5 bytes

e \Virtually every address is
instrumentable

percentage

Distribution by length

28.9%

1.0% ppwg 0.3% 01%

2 & 4 5 B 7 8 9 10 N
instruction length, in bytes

https://www.strchr.com/x86_machine_code_statistics

13

https://www.strchr.com/x86_machine_code_statistics

Instrumentation Performance on x64

8
B8 Full Slowdown
61 : 00 Runtime Slowdown
5.21 0o Litelnst
4 5. [Pin
2.443 31
3.11 - 9 69 2]9

, = 1.7 1.7 :
2 .1'61 149 19 4 13 1.161.14 L5120
0 ‘ , - .

bzip2 blackscholes h264 fluid perl sjeng

Instrumentation and runtime overhead of a procedure counter on different applications of the SPEC suite, relative to
uninstrumented execution time.
Average probe execution time is 50ns, or about 200 CPU cycles

Benchmark || Probes | Mem Overhead | Rel Overhead
bzip2 134 1.39MB 0.6%
blackscholes 36 24KB 0.04%
h264 644 61MB 204%
fluid 108 308KB 0.04%
perl 1996 20.5MB 6.6%
sjeng 188 1.88MB 1.04%

Memory overhead of the procedure counter

14

Use cases

15

Expanding a tool with our framework

Tool 1:

A memory checking library that
monitors malloc and free and checks
for memory leaks at the end of the
program execution.

Process 1:

A long running process that sometimes
crashes because it runs out of memory.

16

Expanding a tool with our framework

load library

call library
analysis
function

unload library

attach to the detach

process

17

Dynamic Targeted Address Sanitizer

Compile-time Address Sanitizer

Dynamic Targeted Address Sanitizer

-

user
Targeted
source
files
Targeted

ASan Package

Language Server
Source Level Binary Level

19

User-space only Data Watch

1. Override malloc() and free(). r
)]) Program
malloc() now adds information in 1
the most significant bits of the
address, and stores what has Salaiiaic

been allocated and where.

2. Each pointer resolution now
raises a segmentation fault,
which is handled by DataWatch. If
the dereference is within bounds,
it corrects the address and sends
back the value. User Space

Data\Watch
Handler

H=

SegFault

20

User-space only Data Watch

1. Override malloc() and free().
malloc() now adds information in
the most significant bits of the
address, and stores what has
been allocated and where.

Program

N

DataWatch

8

User Space

2. The first memory access will
cause a Segfault, and GDB
patches that instruction so that
subsequent calls will not
generate a signal.

The resolution is corrected in the
program without any transition to
kernel space.

In-program
Handler

21

User-space only Data Watch

save regs
call
- jump restore regs
return
jump
Original Instrumented Trampoline Memory check
code code
(a) (b)

22

User-space only Data Watch

Advantages :

1.

Can benefit from GDB’s client/server
architecture

It can target only a specific part of a
program.

Can be attached to a running binary,
although it will not check already allocated
memory.

Can work in conjunction with Data Watch if
pointers are shared outside of the targeted
area.

This would need a Kernel module

Limitations :

Overhead can be significant in libc : giving
an invalid address to strcpy will cause a
large number of illegal instructions to be
hit.

No complete override of malloc and free :
memory allocated outside of the target

range will not be checked.

No verification for data allocated on the
stack.

Issues with system calls and ioctl without a
kernel module.

23

Dynamic C/C++ tracing

e Information about a process execution

e Existing solutions
o Compile-time (e.g.LTTng)
o Slow (e.g. GDB breakpoints)
o Limited (e.g. DynTrace)

24

Dynamic C/C++ tracing

-

user
Targeted
source
files
Tracer
descriptor
Language Server

Source Level Binary Level

Using the minitrace library :
85ns average overhead per tracepoint

30-40ns average overhead compared to compile-time tracing

25

Conclusion

-

user

Source code

IRV Package

Language Server
Source Level Binary Level

26

