

Deep Learning for Anomaly Detection and Cause Identification Quentin Fournier quentin.fournier@polymtl.ca

École Polytechnique de Montréal Laboratoire DORSAL

Automatic Cause Detection of Performance Problems

• Setup:

- Apache server
- pprox 50000 requests
- 1 1000 clients
- Problem: \approx 200 slow requests
- Objective:
 - Automatically detect anomalies
 - Highlight possible causes

Automatic Cause Detection of Performance Problems

Proposed approach

- Extract features such as blocked for disk, blocked for network, blocked for CPU, etc.
- Apply an unsupervised method to detect abnormal requests (dbscan)
- Once abnormal requests are detected, group them by their behaviour (k-means)
- Do a statistical analysis to find hints of the cause (n-gram)

Automatic Cause Detection of Performance Problems

• Conclusion:

- PHP OpCache contention
- Difficulty to initialise sockets
- Paper accepted and presented at the 3rd International Workshop on Software Faults.

You are welcome to ask about my previous works during hackathon!

Current Drawbacks

- Most of the existing works require a domain expert:
 - specify the normal set a threshold behaviour
 - provide relevant features
 etc.
- Each method is somewhat specific to the problem:
 - type of data environments
 - type of anomaly etc.
- Systems change quickly, methods need to be adapted constantly.

Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournierquentin.fournier@polymtl.ca

Current Drawbacks

If we spend less time designing methods to detect anomalies... we have more time to solve them!

Properties of the Ideal Anomaly Detection Method

One would like a method:

- Data-agnostic: works on any trace
- Anomaly-agnostic: detects any type of anomaly
- Online: adapts to changes over time
- Interpretable: provides the reason for the anomaly (hint of the cause)

This method is a unicorn...

Research Scope

Let us start by addressing partially:

- Data-agnostic:
 - Work on kernel events
 - Extend later to userspace events
- Anomaly-agnostic:
 - Only performance anomaly
 - No specific design allowed

Research Scope

Let us start by addressing partially:

- Offline:
 - Faster than online
 - Readily adaptable to online
- Interpretability:
 - Unsolved problem...
 - Which part of the trace is most useful to detect the anomaly

Deep Learning, a Potential Solution.

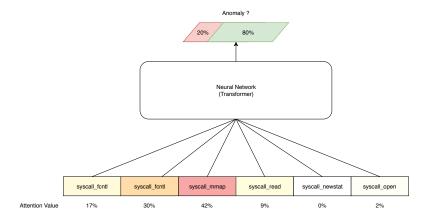
- Neural networks have the potential to solve all of these problems at once!
- Novel techniques are proposed every month
- Most of them have never been applied to trace data and anomaly detection
- In particular the attention mechanism is promising

Attention Mechanism

The attention mechanism tells us:

- How important is each input to compute the output
- Which part of the trace helps the most for the anomaly detection
- Properties:
 - Robust to long sequences
 - Fast to train
 - In most state-of-the-art models
 - Provides insights into the network behaviour

Attention Mechanism



A neural network that detects anomalies of an execution from system calls with attention. $\hfill \ensuremath{\mathsf{A}}$

Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournierquentin.fournier@polymtl.ca

Framework

1 Generate requests with different bottlenecks:

- CPU
- Memory
- Network
- etc.
- Ø Train a model:
 - Input: subsequence of kernel events
 - Output:
 - Duration
 - Label (normal/anomaly)
 - Following events

Framework

What is the network utility?

- Classify if a new request is an anomaly
- Predict if a currently running request will become an anomaly
- Highlight possible anomaly cause based on the attention values

Conclusion

- Adapt the latest deep learning contributions \rightarrow anomaly detection
- Rather unexplored problem
- Start simple, take small steps

Thank You

Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournierquentin.fournier@polymtl.ca