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Automatic Cause Detection of Performance Problems

• Setup:

• Apache server

• ≈ 50000 requests

• 1− 1000 clients

• Problem: ≈ 200 slow requests

• Objective:

• Automatically detect anomalies

• Highlight possible causes
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Automatic Cause Detection of Performance Problems

Proposed approach

1 Extract features such as blocked for disk, blocked for

network, blocked for CPU, etc.

2 Apply an unsupervised method to detect abnormal requests
(dbscan)

3 Once abnormal requests are detected, group them by their
behaviour (k-means)

4 Do a statistical analysis to find hints of the cause (n-gram)
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Automatic Cause Detection of Performance Problems

• Conclusion:

• PHP OpCache contention

• Difficulty to initialise sockets

• Paper accepted and presented at the 3rd International
Workshop on Software Faults.

You are welcome to ask about my previous works during
hackathon!
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Current Drawbacks

• Most of the existing works require a domain expert:

• specify the normal
behaviour

• provide relevant features

• set a threshold

• etc.

• Each method is somewhat specific to the problem:

• type of data

• type of anomaly

• environments

• etc.

• Systems change quickly, methods need to be adapted
constantly.
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Current Drawbacks

If we spend less time designing methods to detect
anomalies... we have more time to solve them!
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Properties of the Ideal Anomaly Detection Method

One would like a method:

• Data-agnostic: works on any trace

• Anomaly-agnostic: detects any type of anomaly

• Online: adapts to changes over time

• Interpretable: provides the reason for the anomaly (hint of the
cause)

This method is a unicorn...
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Research Scope

Let us start by addressing partially:

• Data-agnostic:

• Work on kernel events

• Extend later to userspace events

• Anomaly-agnostic:

• Only performance anomaly

• No specific design allowed
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Research Scope

Let us start by addressing partially:

• Offline:

• Faster than online

• Readily adaptable to online

• Interpretability:

• Unsolved problem...

• Which part of the trace is most useful to detect the anomaly
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Previous work Future Work

Deep Learning, a Potential Solution.

• Neural networks have the potential to solve all of these
problems at once!

• Novel techniques are proposed every month

• Most of them have never been applied to trace data and
anomaly detection

• In particular the attention mechanism is promising
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Attention Mechanism

The attention mechanism tells us:

• How important is each input to compute the output

• Which part of the trace helps the most for the anomaly
detection

Properties:

• Robust to long sequences

• Fast to train

• In most state-of-the-art models

• Provides insights into the network behaviour
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Attention Mechanism

syscall_fcntl syscall_mmap syscall_read syscall_newstatsyscall_fcntl syscall_open

Neural Network
(Transformer)

        20% 80%

Anomaly ?

Attention Value 17% 30% 42% 9% 0% 2%

A neural network that detects anomalies of an execution from system calls with
attention.
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Framework

1 Generate requests with different bottlenecks:

• CPU

• Memory

• Network

• etc.

2 Train a model:

• Input: subsequence of kernel events

• Output:
• Duration
• Label (normal/anomaly)
• Following events
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Framework

What is the network utility?

• Classify if a new request is an anomaly

• Predict if a currently running request will become an anomaly

• Highlight possible anomaly cause based on the attention
values
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Conclusion

• Adapt the latest deep learning contributions → anomaly
detection

• Rather unexplored problem

• Start simple, take small steps
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Thank You
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