Benchmarking Real Time
Operating Systems

Guillaume Champagne

Michel Dagenais
May 6, 2019

Benchmarking Real Time Operating Systems

e How to choose the right RTOS?
o Wide range of products available (Wikipedia lists 160 active projects).

o Vendors may or may not provide metrics for your target system.
e Why benchmarking?
o Embedded systems have limited resources.

o Overhead of the chosen RTOS can impact your design.

e Let'slook at the freely available benchmarks.

—_—

w N

Previous RTOS Benchmarks

&
= N
& Q
é\o(\ \0& > éﬁ\
Q’z} &*% ,\:\6 §®® 6@*
S X < <& <°
1989 1996 2005 2008 2019

The Rhealstone benchmark is comprised of 6 test scenarios. [1]

Task switching time 4. Semaphore shuffling time
Task preemption time 5. Deadlock breaking time
Interrupt latency time 6. Intertask message latency

t1+Hta+t3 -+t +t5+16
6

RhealStone Per formance Number =

Previous RTOS Benchmarks

wn =

&
= N
& e
6\0(\ \0& A QS\
A 3 ¢ 2 Q)
¢ Q N & §
& N & Q& <0
1989 1996 2005 2008 2019

This benchmark uses a Dhrystone loop as the workload and make uses of
RTOS services in 6 scenarios to estimate their overhead. [2]

Results are expressed in Dhrystone per seconds.

Round Robin 4. Memory alloc/dealloc
Task Priority Preemption 5. Interrupt Latency
Semaphore 6. Message passing

Previous RTOS Benchmarks

wn =

&
& O
N (\e,{(O &
xO ® X X
,2}6 N 2 2 &
¥ O .Qf\’/\ ¥ <&
1989 1996 2005 2008 2019

RT-Test aims measures real time performance of a Linux system. [3]
Cyclictest is its most known test to estimate system latency.

Results are time measurements.

Message Queue latency 4. Signal Latency
Semaphore latency 5. Signal round trip
Mutex latency 6. Cyclic test

Previous RTOS Benchmarks

i
= N
e &
6’@(\ \o°® & Q;Q
A 3 ¢ 2 Q)
e S N & O
a2 Q3 SN <°
o o *—©O
1989 1996 2005 2008 2019

e Published by Express Logic, the developers of ThreadX. [4]
e Express Logic offers an easily portable reference implementation.

e Results are computed using a loop counter.

1. Cooperative context switch 4. Message passing
2. Preemptive context switch 5. Semaphore processing
3. Interrupt processing 6. Memory alloc/dealloc

Previous RTOS Benchmarks

<&
= N
& Q
é\o(\ \0& > éﬁ\
’Z} *"o <& 2 b’ﬁ
¥ X &S <d
1989 1996 2005 2008 2019

The previous benchmarks are either:
o Tedious to port to a new RTOS.
o Inaccurate.

We propose a new benchmark that is more accurate and easy to port.

A Modern Benchmark Proposal

e Covers the most common RTOS services

Semaphores - Message Queues
Mutex - Cooperative Scheduling
Event Flags - Preemptive Scheduling

e Offers a reference implementation written with portability in mind.

o Executing on a new RTOS only requires writing a thin porting layer.
e Produces accurate timing results.
e Results are either:

o Printed on the standard output

o Computed in Trace Compass and synchronized with an OS trace.

How Scenarios Are Built

e Examples: Cooperative scheduling and Semaphore scenarios.

o Get precise measurements rather than averages.

Figure 1. Cooperative scheduling scenario Figure 2. Semaphore wait-block and signal-wakeup scenario
t1 t2 t1 t2 t1 t2 t3 t4
: : : : | | | :
' ' ' ']]] 1
' ' ' ' ' ']]
; : , (yield | | wait, , signal |
! 1 1 ']]]]
Task A : : Task A ' ;
Prio = 10 Prio = 20
Task B Task B
Pl’io = 10 Pno = 10

Benchmark Setup

Benchmark executed on a 32 bit RPI 2B+ (MPCore Cortex A-7 900MHz).
o FreeRTOS v10.1
o uCOS-ll
o RTEMS v4.11
o Linux 4.14.98-v7+
L1 & L2 cache enabled, 1 to 1 virtual to physical address mapping (except
Linux).
1kHz tick rate (1 ms period).

Measurements are obtained through the Cycle Count Register.

10

Semaphore

e Measure the overhead of this service in different scenarios.

o Signal with empty wait queue. (Signal)

o Wait on available semaphore. (Wait)

o Signal causing context switch. (Signal-unblock)

o Wait on semaphore causing context switch. (Wait-block)

Diagram 1. Average Cycles for Semaphore

B Wait-Block B Signal-Unblock Wait B Signal
1000 =
750 - 6000
500 41 375*10 4000
250 140 5 L 2000
0 I_II B 0
FreeRTOS RTEMS ucos-lii

Diagram 2. Average Cycles for Semaphore

B FreeRTOS W RTEMS uCos-lil
1000

750

837,
500 594
410
375
250 96
0 Bme D

Wait-Block Signal-Unblock Wait Signal

11

Understanding the Results

e FreeRTOS takes twice as much cycles to take and block on a semaphore

than to signal and switch to a new task.

o Other OS do not exhibit the same behavior.

e Tracing the execution can provide insight.

Diagram 1. Average Cycles for Semaphore

B Wait-Block B Signal-Unblock Wait B Signal
1000
6000
" *9%564 5762
500 375110 %294 #aa0
250 [140 % 123 2000
156
0 I_II B 0
FreeRTOS RTEMS ucos-lii Linux

Diagram 2. Average Cycles for Semaphore

B FreeRTOS W RTEMS uCos-lil
1000

750

837,
500 594
410
375
250 96
0 Bme Twme

Wait-Block Signal-Unblock Wait Signal

12

Understanding the Results

e Comparing the execution of FreeRTOS and uCOS-III.

Figure 3. Trace of FreeRTOS for the semaphore benchmark

Name D ParentID 19:00:00.001506 ,19:00:00.001508 19:00:00.001510 19:00:00.001512 19:00:00.001514
¥ semftrace ‘

ISR ISR

% 10 \

—

i Histogram (] Properties (fJ Bookmarks [Latency Statistics [] Latency Table [, Latencyvs Count §= State System Explorer = Flame Chart (incubator) 52 | Flame Graph (incubator)

LIELE 3 DEI REEY §O&R F
Function 19:00:00.001506 ,19:00:00.001508 19:00:00.001510 19:00:00.001512 19:00:00.001514

"&101

sy | 1|8 O | |
= vPortEnterCritical I u u

¥ sem/trace

vPortEnterCritical

!

- 14 function calls to enter & exit
critical sections.

Figure 4. Trace of uCOS-lII for the semaphore benchmark

¥ sem/trace-ucos

ISR ISR
100 4

il Histogram [Properties [fl Bookmarks [Latency Statistics [] Latency Table [, Latencyvs Count i= State System Explorer = Fla

Function 19:00:00.002148 19:00:00.002150 4 19:00:

v&5

= no_sem_wait
= OSSemPend
= OSSched

OSSemPend

1
2
0

S

Entry and exit of critical sections are
inlined.

OS_Pend is the whole critical section. 13

Understanding the Results

e Results when inlining entry and exit of critical sections in FreeRTOS.
o Code size increases by ~2%.
e Trade-off between length of sections with interrupt disabled and execution

speed.

Diagram 3. Average Cycles for Semaphore Benchmark

B FreeRTOS uCos-lil
800

600

400 i
375 363

200

Wait-Block Signal-Unblock

14

Message Queue

e Scenarios are analogous to the semaphore. Tested with 4 bytes messages.

o Send with empty wait queue. (send)
o Receive with 1 message in queue. (Receive)
o Send causing context switch. (Send-unblock)
o Receive causing a context switch. (Receive-block)
Diagram 4. Average Cycles for MQ Diagram 5. Average Cycles for MQ Benchmark
B Recv-Block B Send-Unblock Receive B Send B FreeRTOS B RTEMS uCosS-lll

1000 862

750

862
474 669
500 396133 4000 500
4025
215 252 o 433
250 119 2000 250
1988% @ﬁm 21527
i R : . e

FreeRTOS

8000 1000

665675 ”» o -~

RTEMS uCos-li Linux Recv-Block Send-Unblock Receive Send

15

Message Queue

e Results are coherent with the semaphore results.
e Let's look at maximum, minimum and average times for FreeRTOS and
uCOS-lll.

Diagram 6. Max,min,av. Cycles for MQ Benchmark

B max H min B av
2000

1500
1000

500

FreeRTOS uCos-Ill

16

Figure 5. Trace of FreeRTOS for the MQ benchmark

Understanding the Results

e UuCOS-lll maximum time is 4.5x higher than the average time.
e FreeRTOS maximum time is 2x higher than the average time.

e UCOS-Ill schedules a Tick Task in the tick interrupt handler.

Figure 6. Trace of uCOS-lII for the MQ benchmark

= xPortStartScheduler xPortStartScheduler

= no_mq_send

Name D 19:00:00.019056 19:00:00.019058 19:00:00.019060 19:00:00.019062 Name D 19:00:01.380146 19:00:01.380148 19:00:01.3@9150 19:00:01.380152 19:00:01.380154 19:00:01.38(
¥ tracefile Yirace
ISR ISR L3 R
100 2
99 100 [|
100 5
99 101
[100 4
—
i= sem/trace i= sem/trace-ucos i= mg/trace i= tracefile = Flame Chart (incubator) & 2L L EE Rl
Function 19:00:00'0190'\56 19:00:00'0&9058 19:00:00.019060 19:00:00.019062 ‘ i= sem/trace i= sem/trace-ucos = mqftrace i= tracefile | = Flame Chart (incubator) & | i trace 2%
‘ Function 19:00:01.380146 19:00:01.380148 19:00:01.380150 ~ 19:00:01.380152 19:00:01.380154 19:00:01.38!
| | > 502
v B0 101 ‘ ‘ vEod
= no_mgq_send

=no

_mq_receive

= xQueueReceive
= prvlsQueueEmpty
= vPortEnterCritical

= vApplicationlRQHandle

BRI D ST D G
| EEEEEEel 1S3 N2 811
I
|
BT

= no_mq_send
= 0SQPost
= 0S_QPost

0OSQPost
OS_QPost

= OS_CPU_ExceptHndlr 0OSSched

0S_CPU_ExceptHndir
R |
o \

OSTimeTick
OSTaskSemPost]

17

Conclusion

Benchmarking helps to understand the behavior of your RTOS.
o Unexpected average execution time.
o Unexpected worst case time.
The port for the RTOS might have room for improvement.
o Inlining entry/exits to critical sections.
Knowing the available configuration options is the key to getting the best
performance possible.
o Background tasks priority.

Benchmarking helps you make an informed design choice.
18

The benchmark reference

Th an k yO u I implementation will be available

shortly on GitHub.

References

—

Kar, R. P., & Porter, K. (1989). Rhealstone-a real-time benchmarking proposal. Dr Dobb’s Journal, 14(2), 14.

2. McRae, E. (1996). Benchmarking real-time operating systems. Dr Dobb's Journal, 21(5), 48-59.

3. The Linux Foundation. RT-Tests. Tiré de
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt—-tests

4. Lamie, W., & Carbone, J. Measure your RTOS’s real-time performance. Tiré de
https://www.embedded.com/design/operating-syvstems/4007081 /Measure-vour—-RTOS-s-real-time-pe

rformance

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://www.embedded.com/design/operating-systems/4007081/Measure-your-RTOS-s-real-time-performance
https://www.embedded.com/design/operating-systems/4007081/Measure-your-RTOS-s-real-time-performance

