
Benchmarking Real Time
Operating Systems

Guillaume Champagne
Michel Dagenais
May 6, 2019

Benchmarking Real Time Operating Systems
● How to choose the right RTOS?

○ Wide range of products available (Wikipedia lists 160 active projects).

○ Vendors may or may not provide metrics for your target system.

● Why benchmarking?

○ Embedded systems have limited resources.

○ Overhead of the chosen RTOS can impact your design.

● Let’s look at the freely available benchmarks.
2

 Previous RTOS Benchmarks

1989 1996 2005 2008 2019

Rhealstone

Dhrys
tone For R

TOS

RT-Test

Thread-M
etric

Today

● The Rhealstone benchmark is comprised of 6 test scenarios. [1]

1. Task switching time
2. Task preemption time
3. Interrupt latency time

4. Semaphore shuffling time
5. Deadlock breaking time
6. Intertask message latency

3

 Previous RTOS Benchmarks

1989 1996 2005 2008 2019

Rhealstone

Dhrys
tone For R

TOS

RT-Test

Thread-M
etric

Today

● This benchmark uses a Dhrystone loop as the workload and make uses of

RTOS services in 6 scenarios to estimate their overhead. [2]

● Results are expressed in Dhrystone per seconds.

1. Round Robin
2. Task Priority Preemption
3. Semaphore

4. Memory alloc/dealloc
5. Interrupt Latency
6. Message passing 4

 Previous RTOS Benchmarks

1989 1996 2005 2008 2019

Rhealstone

Dhrys
tone For R

TOS

RT-Test

Thread-M
etric

Today

● RT-Test aims measures real time performance of a Linux system. [3]

● Cyclictest is its most known test to estimate system latency.

● Results are time measurements.

1. Message Queue latency
2. Semaphore latency
3. Mutex latency

4. Signal Latency
5. Signal round trip
6. Cyclic test 5

 Previous RTOS Benchmarks

1989 1996 2005 2008 2019

Rhealstone

Dhrys
tone For R

TOS

RT-Test

Thread-M
etric

Today

● Published by Express Logic, the developers of ThreadX. [4]

● Express Logic offers an easily portable reference implementation.

● Results are computed using a loop counter.

1. Cooperative context switch
2. Preemptive context switch
3. Interrupt processing

4. Message passing
5. Semaphore processing
6. Memory alloc/dealloc 6

● The previous benchmarks are either:

○ Tedious to port to a new RTOS.

○ Inaccurate.

● We propose a new benchmark that is more accurate and easy to port.

 Previous RTOS Benchmarks

1989 1996 2005 2008 2019

Rhealstone

Dhrys
tone For R

TOS

RT-Test

Thread-M
etric

Today

7

A Modern Benchmark Proposal

8

● Covers the most common RTOS services

● Offers a reference implementation written with portability in mind.

○ Executing on a new RTOS only requires writing a thin porting layer.

● Produces accurate timing results.

● Results are either:

○ Printed on the standard output

○ Computed in Trace Compass and synchronized with an OS trace.

- Semaphores
- Mutex
- Event Flags

- Message Queues
- Cooperative Scheduling
- Preemptive Scheduling

How Scenarios Are Built
● Examples: Cooperative scheduling and Semaphore scenarios.

○ Get precise measurements rather than averages.

9

Figure 1. Cooperative scheduling scenario Figure 2. Semaphore wait-block and signal-wakeup scenario

Benchmark Setup
● Benchmark executed on a 32 bit RPI 2B+ (MPCore Cortex A-7 900MHz).

○ FreeRTOS v10.1

○ uCOS-III

○ RTEMS v4.11

○ Linux 4.14.98-v7+

● L1 & L2 cache enabled, 1 to 1 virtual to physical address mapping (except

Linux).

● 1kHz tick rate (1 ms period).

● Measurements are obtained through the Cycle Count Register.
10

Semaphore
● Measure the overhead of this service in different scenarios.

○ Signal with empty wait queue. (Signal)

○ Wait on available semaphore. (Wait)

○ Signal causing context switch. (Signal-unblock)

○ Wait on semaphore causing context switch. (Wait-block)

11

● FreeRTOS takes twice as much cycles to take and block on a semaphore

than to signal and switch to a new task.

○ Other OS do not exhibit the same behavior.

● Tracing the execution can provide insight.

Understanding the Results

12

Understanding the Results
● Comparing the execution of FreeRTOS and uCOS-III.

- 14 function calls to enter & exit
critical sections.

- Entry and exit of critical sections are
inlined.

- OS_Pend is the whole critical section.

Figure 3. Trace of FreeRTOS for the semaphore benchmark Figure 4. Trace of uCOS-III for the semaphore benchmark

13

Understanding the Results
● Results when inlining entry and exit of critical sections in FreeRTOS.

○ Code size increases by ~2%.

● Trade-off between length of sections with interrupt disabled and execution

speed.

14

Message Queue
● Scenarios are analogous to the semaphore. Tested with 4 bytes messages.

○ Send with empty wait queue. (send)

○ Receive with 1 message in queue. (Receive)

○ Send causing context switch. (Send-unblock)

○ Receive causing a context switch. (Receive-block)

15

Message Queue
● Results are coherent with the semaphore results.

● Let’s look at maximum, minimum and average times for FreeRTOS and

uCOS-III.

16

Understanding the Results

Figure 5. Trace of FreeRTOS for the MQ benchmark Figure 6. Trace of uCOS-III for the MQ benchmark

● uCOS-III maximum time is 4.5x higher than the average time.

● FreeRTOS maximum time is 2x higher than the average time.

● uCOS-III schedules a Tick Task in the tick interrupt handler.

17

● Benchmarking helps to understand the behavior of your RTOS.

○ Unexpected average execution time.

○ Unexpected worst case time.

● The port for the RTOS might have room for improvement.

○ Inlining entry/exits to critical sections.

● Knowing the available configuration options is the key to getting the best

performance possible.

○ Background tasks priority.

● Benchmarking helps you make an informed design choice.

Conclusion

18

Thank you!
The benchmark reference
implementation will be available
shortly on GitHub.

References
1. Kar, R. P., & Porter, K. (1989). Rhealstone-a real-time benchmarking proposal. Dr Dobb’s Journal, 14(2), 14.
2. McRae, E. (1996). Benchmarking real-time operating systems. Dr Dobb's Journal, 21(5), 48-59.
3. The Linux Foundation. RT-Tests. Tiré de

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests .
4. Lamie, W., & Carbone, J. Measure your RTOS’s real-time performance. Tiré de

https://www.embedded.com/design/operating-systems/4007081/Measure-your-RTOS-s-real-time-pe
rformance

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://www.embedded.com/design/operating-systems/4007081/Measure-your-RTOS-s-real-time-performance
https://www.embedded.com/design/operating-systems/4007081/Measure-your-RTOS-s-real-time-performance

