

# Duplicate bug report detection through machine learning techniques Irving Muller Rodrigues irving.muller-rodrigues@polymtl.ca

École Polytechnique de Montréal Laboratoire DORSAL

## Duplicate bug reports

- Duplicate bug reports describe the same bug
- Very common in Bug Tracking Systems (BTSs)
- Undetected duplicate bug reports
  - Waste of developer time
- Manually filtered by triage team
  - Beyond team capacity
- Machine learning technique to help triage team
  - Automatic detection of duplicate bug reports
  - **Bug report deduplication**



Address the bug deduplication using three distinct data types:

- Textual data
- Ø Stack trace
- Iracing user space or kernel space

#### Textual data

- A Soft Alignment Model for Bug Deduplication (MSR 2020)
- Attention mechanism  $\rightarrow$  more powerful model to compare textual data
- State-of-the-art performance

#### 2 Stack trace

• We are currently working on this problem.



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Why to use stack traces?

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Textual Data Disadvantage

#### • Heavily dependent on user's expertise

- Vague and Ambiguous
- Different technical background  $\rightarrow$  different terminologies
- Limited information about the system execution
  - Exterior system behaviors
- Stack Traces
  - More precise and technical information about the bug
  - User independent

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## **Previous Works**

- Dang et. al, 2012[1]; Ebrahimi et. al., 2016[2]; Koopaei et. al. 2015[3]; Kim et. al., 2015[4]
  - Function calls are the sequence elements
  - Sequence similarity
- Lerch et. al., 2013[5]; Campbell et. al, 2016[6]
  - Textual similarity
  - TF-IDF
  - Ignore structure information



### **Previous Works**

| Bug 15247 |                                                  | Bug 51547 |                                           |
|-----------|--------------------------------------------------|-----------|-------------------------------------------|
| Position  | Function call                                    | Position  | Function call                             |
| 1         | localstore.FileSystemResourceManager.read        | 1         | localstore.FileSystemResourceManager.read |
| 2         | resources.File.getContents                       | 2         | internal.resources.File.getContents       |
| 3         | resources.File.getContents                       | 3         | internal.resources.File.getContents       |
| 4         | core.util.SyncFileWriter.readLines               | 4         | core.util.SyncFileWriter.readFirstLine    |
| 5         | core.util.SyncFileWriter.readAllResourceSync     | 5         | core.util.SyncFileWriter.readFolderSync   |
| 6         | EclipseSynchronizer.cacheResourceSyncForChildren | 6         | EclipseSynchronizer.cacheFolderSync       |
| 7         | EclipseSynchronizer.getResourceSync              | 7         | EclipseSynchronizer.getFolderSync         |
| 8         | EclipsePhantomSynchronizer.getResourceSync       | 8         | EclipseFolder.getFolderSyncInfo           |

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## **Previous Works**

- Dang et. al, 2012[1]; Ebrahimi et. al., 2016[2]; Koopaei et. al. 2015[3]; Kim et. al., 2015[4]
  - Function calls are the sequence elements
  - Sequence similarity
- Lerch et. al., 2013[5]; Campbell et. al, 2016[6]
  - Textual similarity
  - TF-IDF
  - Ignore structure information



## **Our Solution**

#### Textual similarity + Sequence Similarity

Prove 1

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

**Our Solution** 



## Our Work - Frame Encoder



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

### Our Work - Frame Encoder

#### Problem

- Frame embedding only contains textual information
- Lack of the frame position

## Our Work - Position embedding

#### • Solution

- Position embedding: Positions are converted to vectors
- Concatenation: Position embedding and Frame embedding



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Our Work - Soft attention alignment

#### Soft attention alignment

- Attention mechanism
- Summarize frame embedding information in a stack trace x into a fixed-size vector
  - Focus on the information in x that is related to a specific frame in the stack trace y
  - Output: context vector



## Our Work - Comparison Layer

#### 2 Comparison Layer

- Compare frame embedding and its context vector
- Dense Layer
- Output: comparison vector



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Our Work - Aggregation layer

#### 3 Aggregation layer

- Aggregate all the comparison vector of a stack trace into a vector
- LSTM + mean pooling
- Output: aggregation vector



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Our Work - Classifier

- **4** Classifier
  - Input: aggregation vectors of stack traces y and x
  - MLP
  - Output: probability P(y|q,c) of y being a duplicate of x



## Experiments

- Ubuntu launchpad
  - 15,293 bug reports in 3,824 buckets
  - 70% training and 30% test
  - Validation: 5% training data set
- Our method is compared to:
  - Damerau-levenshtein distance
  - PartyCrasher [6] (TF-IDF)
  - Position Dependent Model (PDM) [1]



## Experiments

- Metrics
  - Ranking metrics
    - Recommendation list for each duplicate report
    - Mean average precision: inversely proportional to the correct report positions in the recommendation lists
    - Recall Rate @k: portion of duplicate report whose the correct reports are in top-k positions of the recommendation lists.
    - 9 Multi-class classification: accuracy (threshold of top-1 report)
  - **6** Clustering metrics: ARI and AMI (threshold of top-1 report)

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

### Preliminar Results - Recall rate @k



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

### Preliminar Results - MAP

| Method                       | MAP      |
|------------------------------|----------|
| PartyCrasher                 | 0.7006   |
| PDM                          | 0.621522 |
| Damerau-levenshtein distance | 0.752491 |
| Our model                    | 0.767613 |

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

### Preliminar Results - Accuracy

| Method                       | Accuracy |
|------------------------------|----------|
| PartyCrasher                 | 0.4421   |
| PDM                          | 0.294118 |
| Damerau-levenshtein distance | 0.419355 |
| Our model                    | 0.493359 |

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

### Preliminar Results - ARI and AMI

| Method                       | AMI      | ARI      |
|------------------------------|----------|----------|
| PartyCrasher                 | 0.689413 | 0.70271  |
| Damerau-levenshtein distance | 0.711171 | 0.729981 |
| PDM                          | 0.563246 | 0.422052 |
| Our model                    | 0.753107 | 0.745103 |

Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Future Work

- Overfitting
  - Dropout, Layer norm and Early stopping
- Test different frame encoder architectures
  - Current: Mean pooling operator
- Categorical data
- Ablation Study



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

## Thank you for your attention!



Duplicate bug report detection through machine learning techniques - Irving Muller Rodrigues

- Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, "Rebucket: A method for clustering duplicate crash reports based on call stack similarity," in *2012 34th International Conference on Software Engineering (ICSE)*, June 2012, pp. 1084–1093.
- N. E. Koopaei, M. S. Islam, A. Hamou-Lhadj, and M. Hamdaqa, "An effective method for detecting duplicate crash reports using crash traces and hidden markov models," in *Proceedings of the 26th Annual International Conference on Computer Science and Software Engineering*, ser. CASCON '16. Riverton, NJ, USA: IBM Corp., 2016, pp. 75–84. [Online]. Available: http://dl.acm.org/citation.cfm?id=3049877.3049885
- N. E. Koopaei and A. Hamou-Lhadj, "Crashautomata: An approach for the detection of duplicate crash reports based on generalizable automata," in *Proceedings of the 25th Annual*

International Conference on Computer Science and Software Engineering, ser. CASCON '15. Riverton, NJ, USA: IBM Corp., 2015, pp. 201–210. [Online]. Available: http://dl.acm.org/citation.cfm?id=2886444.2886474

- Y. Kim, "Convolutional neural networks for sentence classification," in *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Association for Computational Linguistics, 2014, pp. 1746–1751. [Online]. Available: http://aclweb.org/anthology/D14-1181
- J. Lerch and M. Mezini, "Finding duplicates of your yet unwritten bug report," in *Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering*, ser. CSMR '13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 69–78. [Online]. Available: http://dx.doi.org/10.1109/CSMR.2013.17

J. C. Campbell, E. A. Santos, and A. Hindle, "The unreasonable effectiveness of traditional information retrieval in crash report deduplication," in 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), May 2016, pp. 269–280.