
Polytechnique Montréal – December 2018Polytechnique Montréal – December 2018

mathieu.desnoyers@efcios.com 

What’s new at EfficiOS ?

2

OutlineOutline

● Linux kernel and glibc contributions,
● LTTng 2.11,
● Babeltrace 2,
● LTTng Scope.

3

Linux Kernel and glibc ContributionsLinux Kernel and glibc Contributions

● Memory Barriers (membarrier(2)):
– glibc: work in progress to integrate membarrier(3) libc library function,

● Restartable sequence (rseq):
– System call merged into Linux 4.18,

– glibc: work in progress to automatically register rseq TLS for each thread,

– glibc: use rseq to speed up sched_getcpu(3).

– librseq,

● CPU operation vectors (cpu_opv):
– Linus requests examples of rseq real-life users before merging additional code.

4

LTTng 2.11LTTng 2.11

● Currently at 2.11-rc1 (release candidate 1),
● Working on stress-testing/fixing session rotation corner-cases and documentation

before final version,
● Expect 2.11 final end of December,
● New features:

– Session rotation,

– Dynamic instrumentation with uprobes,

– Filtering on array and sequence integers in LTTng-UST and LTTng-modules.

– Filtering: bitwise operators,

– Kernel tracer: kernel and user-space callstack contexts.

5

LTTng 2.11 – Session RotationLTTng 2.11 – Session Rotation

● Split trace in self-contained traces on the fly,
● Allow processing portion of the trace without stopping tracing,
● Allows for pipelining and/or sharding of analyses (scale-out

distributed analysis),
● Encryption, compression, cleanup of old chunks, integration

with external message bus tools,
● Fine-grained Distributed Application Monitoring Using LTTng,

Jérémie Galarneau, Open Source Summit 2018.

6

LTTng 2.11 – Dynamic instrumentation with uprobesLTTng 2.11 – Dynamic instrumentation with uprobes

● Adding tracepoints without having to recompile or restart a process,
● Using the uprobe interface,
● Tracing userspace using the kernel tracer,
● Supported instrumentation point types:

– ELF symbols,

– SystemTap/SDT probe points (without semaphore).

lttng enable-event --kernel
--userspace-probe=elf:/path/to/binary:symbol
 event_name

7

LTTng 2.11 – Dynamic instrumentation with uprobesLTTng 2.11 – Dynamic instrumentation with uprobes

● Limitations:
– Slower than LTTng-UST, because of context-switches to the kernel,

– No tracepoint payload recorded at the moment.

8

Filtering on array and sequence of integersFiltering on array and sequence of integers

● Filter out event based on the content of arrays and sequence

[14:32:57.03] host lttng_ust_prov:event : { _field_length = 4,

field = [[0] = 121, [1] = 55, [2] = 23, [3] = 42] }

● Define filter using indexes in sequence:

lttng enable-event --userspace lttng_ust_prov:event

--filter=’field[0]<100 && field[3]==42‘

9

Filtering: Bitwise OperatorsFiltering: Bitwise Operators

● Support bitwise operators in both kernel and user-space
tracers:
– Bitwise NOT (~),

– Bitwise left/right shift (<</>>),

– Bitwise AND (&),

– Bitwise OR (|),

– Bitwise XOR (^).

10

Kernel and User-Space Callstack ContextsKernel and User-Space Callstack Contexts

● In lttng-modules kernel tracer,
● Sample kernel and user-space callstacks as a context,
● Main use-case: sample user-space callstack on system call

entry,
● Requires applications and libraries to be built with frame

pointers to unroll user-space stacks.

11

Upcoming LTTng 2.12 FeaturesUpcoming LTTng 2.12 Features

● LTTng 2.12-rc1 planned for mid-January 2019, 2.12 final
planned for February 2019,

● User ID tracker,
● Relay daemon enhancements:

– Categorize trace hierarchy by session / hostname,

– Allow overriding current working directory,

– LRU tracking of open file descriptors.

● Fast LTTng clear.

12

2019 (LTTng 2.13+)2019 (LTTng 2.13+)

● LTTng dynamic snapshot and event notification.
● LTTng strace-alike follow children:

– Trace a hierarchy of processes with the PID tracker.

● Trace hit counters per tracepoint,
● Multiple liburcu flavors per applications,
● Data throughput counters per tracepoint.

13

Babeltrace 2.0 - PerformanceBabeltrace 2.0 - Performance

● Babeltrace 2.0-pre measured to be 12.5x slower than Babeltrace 1.x,
● Focused on optimisations requiring changes to the API:

– Reducing object allocation:
● Object pooling.

– Removing precondition checks:
● Introducing “Developer Mode”.

– Remove superfluous reference counting.

● Now 1.2x slower than Babeltrace 1.x,
● Aiming at least to be as fast as Babeltrace 1.x.

14

Babeltrace 2 Optimisation ResultsBabeltrace 2 Optimisation Results

Conditional
precondition check

Object
pooling

Less
ref. count

Gain: 27 %

Gain: 267 %

1.2× slower than
Babeltrace 1.5

12.5× slower than
Babeltrace 1.5

Various CTF source
optimizations

Gain:
26 %

Gain: 255 %

15

LTTng ScopeLTTng Scope

● LTTng Scope 0.4 (released October 15, 2018)
● Highlights:

– Correlate multiple traces within a trace project:
● E.g. kernel trace and UST traces,

– Event count chart improvements,

– Bug fixes.

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

