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Anomaly Detection

Introduction          Methodology          Results         Conclusion

● Anomaly is something different which deviates from the common rule.
● Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.
● Anomaly detection refers to the problem of finding patterns in data that do not conform to expected 

behavior.
● Many anomaly detection techniques have been developed for various application domains.

The figure retrieved from: https://pngtree.com
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Motivation
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Online Anomaly Detection 
in system

Discriminate between 
normal and anomalous 
processes

Develop an automatic anomaly 
detection framework

Develop a 
performance anomaly
 prediction framework

Improve the accuracy 
of detection methods
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Challenges
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01 Defining a normal region that encompasses every possible normal behavior is very 
difficult.

Normal behavior keeps evolving and the current notion of normal behavior might 
not be sufficiently representative in the future.

The exact notion of an anomaly is different for different application domains.

Availability of labeled data for training/validation of models used by anomaly 
detection techniques is a major issue.
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Why system calls?
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System Call is a program signal for requesting a service from the system kernel.

System calls can represent low-level interactions between a process and the kernel in the system.

system call traces generated by program executions are stable and consistent during program’s normal 
activities so that they can be used to distinguish the abnormal operations from normal activities. 

System call streams are enormous, and suitable to use in machine learning. A single process can 
produce thousands system calls per second. 
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We can use three different representations of system calls: n-grams of system call names, 
histograms of system call names, and individual system calls with associated parameters.

System call sequences can provide both momentary and temporal dynamics of process behavior. 
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Methodology

Introduction          Methodology          Results         Conclusion

The methodology is based on collecting streams of system calls produced by all or selected processes on the system, and sending 
them to a monitoring module.

Machine learning algorithms are used to identify changes in process behavior.

The methodology uses a sequence of system call count vectors  or sequence of system call duration vectors as the data format 
which can handle large and varying volumes of data.
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Our Use Case
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The open source MySQL synthetic benchmarks tool, Sysbench, with oltp test in complex mode.

A virtual machine with different workloads, such as:
I. (CPU problem) Setting the VM’s CPU cap to too low (e.g., 1 CPU core, while running 8 threads of MySQL)
II. (Memory problem) Setting the memory cap to too low (e.g., 256 MB memory, while the MySQL table is of size 6 GB)

Sliding window = 10k system calls
overlapping size = 100 system calls

18k normal and anomalous samples
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Introduction          Methodology          Results         Conclusion

The benchmarking tool is run on virtual machines with different configurations and
 varying load on resources; LTTng is used to record the different tracing data streams.

Trace compass is used to read tracing data, create tables of system calls and 
construct the initial vectors to use in machine learning part.
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Indexes instead of names 
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Read Trace
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Preprocessing
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Scaling
It selects the same number of samples from each class without considering any order in vectors.

Normalization
The goal of normalization is to change the values of numeric columns in the dataset to use a 
common scale, without distorting differences in the ranges of values or losing information.

Sparsity
Sparse matrices are common in machine learning. They occur in some data collection processes or 
applying certain data transformation techniques like one-hot encoding or count vectorizing.

Fisher score
It selects each feature  independently according to their scores under the Fisher criterion, which 
leads to a suboptimal subset of features.
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Lea rn ing  par t
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SUPERVISED

SEMI-
SUPERVISED

UNSUPERVISED

We have analysed the created dataset in 3 
steps:  At first, we trained the SVM classifier 
using labelled data. In the second step, we 
did clustering on samples (unsupervised) and 
finally, we used parameters estimated in the 
classification step to cluster the samples. 
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Supervised Learning
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The Fisher score for each system 
call in frequency-based approach

The Fisher score for each 
system call in duration-based 

approach
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Unsupervised Learning
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Semi-Supervised Learning

DBSCANDBSCAN
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Autoencoder
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Score

The figure retrieved from: https://www.vectorstock.com
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Results
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Supervised Learning accuracy versus different number of top-ranked features



Results
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Heat map of the frequency-based anomaly 
detection accuracy using different  and C.γ

Heat map of the duration-based anomaly 
detection accuracy using different  and C.γ
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Results
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Accuracy of the supervised learning approach on multiple runs.

The performance of the proposed RBF based anomaly detection approach 
compared to the Sigmoid and polynomial based methods.
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We gained ARI=0.8471 by utilizing 
DBSCAN clustering method with 
eps=0.001 and Fisher Score feature 
selection with (number of top-ranked 
features)=3 
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Future Directions
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01
Test the methodology on other use 
cases to find stable and accurate 
strategy.

02
Utilize other metrics and analysis 
such as critical path data extraction 
to improve the performance.

03

Apply the methodology for online 
anomaly detection

04
Employ the extracted features in developing 
the anomaly prediction framework.
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Iman.kohyarnejadfard@polymtl.ca
https://github.com/Kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca
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