
 NOPROBE: A Fast Multi-strategy Probing
Technique For x86 Dynamic Binary

Instrumentation
Anas Balboul

Mai 08, 2020

 Polytechnique Montréal

Génie informatique et logiciel
1

POLYTECHNIQUE MONTREAL – Balboul Anas

Summary

1. Introduction

2. Literature review

3. Problem definition

4. Proposed Solution

5. Results

6. Conclusion

1
2

1. Introduction

3

POLYTECHNIQUE MONTREAL – Balboul Anas

1. Introduction

7

❏The what and why..

❏Static:

❏Added before/during compilation

❏Dynamic:

❏During the execution

❏Agent injected in process address space

4

POLYTECHNIQUE MONTREAL – Balboul Anas

1. Introduction x86-ISA
❏x86 variable instruction size

❏Reason: performance and compression.

❏Dynamic Binary instrumentation (code injection with instr replacement)

❏branch (CALL / JMP) vs Trap (INT3)

❏Instructions border changes:

❏ Jump to an invalid border.

❏ Return from preemption, interruption, or blocked state to an invalid border.

7

5

 2. Literature review

Dynamic binary instrumentation in

user-space

6

POLYTECHNIQUE MONTREAL – Balboul Anas

2. Revue de la littérature

7

❏Uprobe: Trap instruction (flexible but too slow)

❏GDB: Trap instruction (with ptrace => slower than uprobe)

❏ Fast tracepoint: A branch with a limit on the instrumented instr size

❏ Seek quiescence by stopping the world

❏Dyninst: Uses Control-Flow Graph (CFG) => flexible and very fast

❏ Too much intrusion: high memory usage, stop the world (more than

5s in 64 cores machine), high computation during the insertion.

❏Valgrind and Pin: Intermediate representation (IR) in a VM.

❏ Very slow execution (up to x100 slower for Valgrind)

❏Liteinst and Dyntrace: A branch probe that embed traps in it’s offset

❏ Fast in most cases, but could worst than trap-based probes in

some cases (loop)

❏ Fragment the memory. Badly supported in x86_32 (4Go addr

space). Dyntrace: Unsafe on-the-fly instrumentation.
7

 3. Problem definition

8

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Simultaneous execution problem:

❏Due to instruction borders changes

❏Performance and memory usage

3. Problem definition

9

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Out-of-line execution: Support as many instruction relocation as possible

(Target out of reach, invalid relative address).

❏Intel Cross/Self Modification:

❏During execution, patching code that overlaps cache lines may not

be atomic and can cause a GPF.

❏Intel errata: A core should execute a serializing instruction (CPUID,

IRET, etc..) prior to new code execution.

3. Problem definition

10

 4. Proposed Solution

11

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: A dynamic instrumentation solution

❏First strategy:

❏

4. Proposed Solution

12

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOP-padding added by default during compiler optimization starting from level 2 for
GCC and level 3 for Clang.
❏They are everywhere !

❏percentage of reachable and unreachable NOPs in two samples:

4. Proposed Solution

13

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOP distribution analysis

❏Histogram of distances between NOPs:

4. Proposed Solution

14

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: A dynamic instrumentation solution

❏Second Strategy:

❏

4. Proposed Solution

15

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: A dynamic instrumentation solution

❏Third and last resort strategy:

❏

4. Proposed Solution

16

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Static Analysis:

❏Which strategy to deploy:

❏ Disassemble the probed function and check the target of each branch..

❏To find out if a NOP is reachable or not:

❏ The function size in the ELF symbol table is used to find NOPs that align

functions.

❏ NOPs aligning jumps, loops and labels have a pattern:

4. Proposed Solution

17

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Reachable NOP:

❏The program could execute them

❏Carefully patch them..

❏We need 5 bytes for the trampoline

4. Proposed Solution

18

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Assigning NOPs to probes:

❏Optimal solution (Hungarian):

❏ Complexity O(n³)

❏Greedy algorithm:

❏ A two bytes JMP has one byte offset and can go 128/127 bytes back

and forth.

❏ Prioritize the closed NOP to a probe.

4. Proposed Solution

19

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Out-of-Line eXecution (OLX):

❏5-byte JMP, JCC (conditional jump) and CALL have an offset of 4 bytes

❏They can only reach 2Go in both directions (problematic in x86_64)

❏They are relocated this way:

4. Proposed Solution

20

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Out-of-Line eXecution (OLX):

❏2-byte JMP, JCC (conditional jump) have an offset of 1 byte

❏They can only reach 127/128 bytes in both directions

❏They are relocated this way:

4. Proposed Solution

21

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Out-of-Line eXecution (OLX):

❏RIP relative addressing (added in x86_64)

❏Relative address is invalid after relocation:

❏They are relocated this way: (inspired from uprobe and adapted to user space)

4. Proposed Solution

22

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Lock and Load: On-the-fly patching without stopping the program

❏Two steps:

❏ First step: Lock and Redirect:

4. Proposed Solution

23

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Lock and Load: On-the-fly patching without stopping the program

❏Two steps:

❏ Second step: Load and Arm:

❏ When available: Core serialization with membarrier (the syscall)

❏ Else: real-time signal to execute CPUID.

4. Proposed Solution

24

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏NOProbe: Signal Dispatching:

❏We use two signals

❏ SIGTRAP:

❏ When locking the patching area

❏ Real-time signal

❏ When redirecting the threads outside the patching area

❏We avoid exclusive usage by sharing them

❏How we do it ? we Intercept sigaction(), signal(), et sigprocmask() :

❏ Save the signal handler and signal masks in user space instead of

registering them.

❏ We register our own trap handler that dispatch the signal to the saved

handler registered by the program or to the instrumentation signal

handler (based on the TID for real-time signal, and based on the

address of the raised trap for SIGTRAP).

4. Proposed Solution

25

 5. Results

26

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Specification of the test machine:

5. Results

27

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Instrumentation Installation cost:

❏VS the number of executing thread:

5. Results

28

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Instrumentation Installation cost:

❏VS the number of installed probes:

5. Results

29

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Instrumentation Installation cost:

❏VS the average function size:

5. Results

30

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Execution cost:

5. Results

31

❏For probe insertion in a red and black tree, NOProbe avoid using costly locks and CAS

(Compare And Swap) operations.

POLYTECHNIQUE MONTREAL – Balboul Anas 7

❏Probe effectiveness

❏Defined as: successful fast (branch) probes insertion ratio:

5. Results

32

 6. Conclusion

33

❏NOProbe: Fast, scalable, and less intrusive.

❏Multiple strategy

❏5-byte CALL

❏2-byte JMP combined with a NOP-padding.

❏ Two algorithms to assign NOPs to probes.

❏Last resort TRAP-based probe.

❏Lock and Load: A protocol that can patch up to a basic block length safely without

stopping the program.

❏Future direction:

❏More strategies could be added.

❏For safe probe removal, URCU (User-space Read Copy Update) could be used.

POLYTECHNIQUE MONTREAL – Balboul Anas 7

6. Conclusion

34

