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Anomaly Detection

Introduction          Previously on Anomaly Detection        Methodology           Conclusion

Anomaly is something different which deviates from the common rule.

Anomaly detection refers to the problem of finding patterns in data that do not conform to 
expected behavior.

Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.
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Many anomaly detection techniques have been developed for various application domains.
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             Workload

  
  the  application imposes 
  continuous and more than 
expected average workload          
intensity to the system.

Performance Anomaly

The most significant obstacles 

to the system to perform 

confidently and predictably 

                Sources

Faults in system resources and
            Components

       
         affect application 
performance at a high cost

Software bugs, operator 
errors, hardware faults, and 
       security violations 

           system failures
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varying application load,   
application  bugs, 

updates, and hardware 
failure
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Previously on Anomaly Detection

May 2019
01 SUPERVISED

LTTng was used to monitor the processes running on a system and extract the 
streams of system calls. 

The system calls streams are split into short sequences using a sliding window 
strategy.

Finally, a multi-class support vector machine approach is applied to evaluate 
the  performance of the system and detect the anomalous sequences.
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Previously on Anomaly Detection

Dec. 2019
02

SEMI
SUPERVISED01

This method benefits from both supervised and unsupervised learning 
techniques to distinguish between normal and anomalous behavior.

It removes the need of providing a huge labeled dataset.

We select the most discriminative features from a small set of labelled data by 
means of the iterative Fisher Score feature selection method.

In the sequel, the DBSCAN clustering algorithm is applied to group the 
remaining data into the sought number of classes.
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Previously on Anomaly Detection

May 2020
03

Microservice 
Environment01 02

The concept of DevOps and agile approaches like microservice architectures and Continuous Integration 
becomes extremely popular since the need for flexible and scalable solutions increased.
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Microservice-based applications

Microservices are small services that are interconnected with many other microservices to present 
complex services like web applications.

Microservices provide greater scalability and make distributing the application over 
multiple physical or virtual systems possible.

Microservices architecture tackles the problem of productivity and speed by 
decomposing applications into smaller services that are faster to develop and 
easier to manage; if one microservice fails, the others will continue to work.

Each microservice can be written using different technologies, and 
they enable continuous delivery. 
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03
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Despite all these benefits, by increasing the degree of automation and distribution, 
application performance monitoring becomes more challenging because 
microservices are possibly short-lived and may be replaced within seconds. 

Hence new requirements in the way of anomaly detection have emerged as these 
changes could also be the cause of anomalies.

Microservice-based applications

Introduction          Microservice Environment        Methodology           Conclusion
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Motivation

24

Introduction          Methodology          Demo         Conclusion
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Online Anomaly Detection 
in microservice systems

Discriminate between 
normal and anomalous 
behaviour 

Present a localization 
system

Expand the
method for using 
in container-based 
services deployed 
using Docker and 

Kubernetes

Improve the accuracy 
of detection methods

POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard



Challenges
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01 Defining a normal region that encompasses every possible normal behavior is very 
difficult.

Normal behavior keeps evolving and the current notion of normal behavior might 
not be sufficiently representative in the future.

The exact notion of an anomaly is different for different application domains.

Availability of labeled data for training/validation of models used by anomaly 
detection techniques is a major issue.
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04
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Methodology
The methodology is based on collecting streams of events produced by all or selected microservices, and sending them to the 
Data Processing Module.

Machine learning algorithms are used to identify changes in services behavior.

The methodology uses the performance metrics across microservices, containers, and nodes monitored resources.
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Tracing and Monitoring Feature Extraction Data Set Creation

OpenTracing 
  (JAEGER)

Visualization

Extracting the most  
informative features

Preprocessing

Preprocessing

Train anomaly  
detection model

Create 2D  
and 3D views

Machine Learning

cAdvisor
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Case Study 
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An open-source microservices-based application is developed for evaluating our proposed anomaly 
detection method.

It emulates an online movie and book encyclopedia that consists of 3 main services: Movies, Books and 
Evaluation services.

We deployed several instances of each service at the same time using Docker and Kubernetes.

The experimental environment consists of 12 VMs (nodes) in 3 servers.
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The workload is generated by another application at different times. 

Movies Books

Evaluation
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Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Monitoring  
Agent

Container

VM

Docker  
Engine

Kubernetes Platform

VM

Workload 
Generator

Data Set

Implementation of the target system in Microservice architecture

We deployed multiple instances of the microservices on several VMs:
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D O K EC

Developing with Docker

R

Containers are isolated workload environments in a virtualized operating system such as cloud.

They are used to allocate computing resources, help to organize, migrate and develop microservices.

Containers allow us to run an application and its dependencies in a resource-isolated process.

Each component runs in an isolated environment and does not share memory, CPU, or the disk of the 
host operating system(OS).

Our microservice-based application is composed of small services, each of which is in a container and 
runs its own process.

Containers can communicate with each other through well-defined channels.
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D O K EC

Developing with Docker

R

Docker is a tool designed to make it easier to create, deploy, and run applications by using containers.

Docker is a set of platform as a service products that uses OS-level virtualization to deliver software in 
packages called containers.

Introduction          Microservice Environment        Methodology           Conclusion
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Kubernetes is an open-source system for 
automating deployment, scaling, and 
management of containerized applications. 
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It has a large, rapidly growing ecosystem.

We use Kubernetes because its 
services, support, and tools are 
widely available.

The target system runs on a kubernetes 
platform which consists of 12 VMs.

Each VM has 1 CPU and 2 GB memory 
and VMs are connected through a 100 
Mbps network.

Kubernetes

Introduction          Microservice Environment        Methodology           Conclusion
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JaegerJaeger

ZipkinZipkin

Monitoring 
Agent

Service level

Node 
level

A monitoring agent is installed on each of the VMs.

cAdvisorcAdvisor
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Fault injection 
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Injecting faults as intentional software bugs into the microservices code. Whenever a 
microservice is called, one of the following events may happen:

We consider injecting faults to our environment using two scenarios:

Pause the microservice for n milliseconds and then continue.

Calculate π with 50 bits of precision.

Perform the normal functionality

1

Introduction          Microservice Environment        Methodology           Conclusion



Fault injection 
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We consider injecting faults to our environment using two scenarios:

In the second scenario, the target is the containers in which the services are running.

CPU and memory problems can be simulated using Stress. It is a workload generator tool 
designed to subject your system to a configurable measure of CPU, memory, I/O and disk 
stress.

Network fault is also simulated using Pumba. It can do network emulation, simulating 
different network failures, like delay, packet loss/corruption/reorder, bandwidth limits and 
more.

2
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Data Processing Module
Anomalies in data happen under various forms. Two main forms of anomalies are as follows:

● Point anomalies are data points that are 
different from normal data. 

● Two points X1 and X2 are significantly 
different from all other data, so they 
can be considered as anomaly. 

● In this class of anomalies, we can not 
detect the individual data points as 
anomalies by themselves, however, their 
occurrence together as a collection may 
be an anomalous behaviour. 

... ftp, http-web, ssh, smtp-mail, http-web, ssh, buffer-
overflow, ftp, http-web, ftp, smtp-mail,http-web...

● where each individual event in the bolded 
sequence would not be anomalous, 
however, the collection together is a sign 
of a probable intrusion.
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A variable number of instances of a microservice may run simultaneously inside a microservice-based application.

Because the microservice application consists of various microservices, with teams working on each one, 
updates are committed irregularly and continuously.

When an update is released, it may happen that one or more run the updated version and the other ones 
run the older version.

 Different versions of the service may behave differently in terms of performance, known as anomaly.

Each instance will be able to output specific performance metrics that are accessible during the execution.

If we consider each instance (or container) at a given time as one point in our feature space, we will be able 
to investigate point anomalies in the system.

At this stage, we do not involve the relationships between services and only use the performance metrics of 
the nodes.
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Point 
anomalies 

One choice of design is that we perform classification in microservice instances level.

Introduction          Microservice Environment        Methodology           Conclusion



A trace T is represented as an enumerated collection of events sorted by the timestamps (e0, e1, ..., en).

Collective anomalies

The model should be stable for current microservice instances and can be adaptable with changing the environment like changing or adding hardware.

Classic feature selection methods that don't consider specialized information in this field, are not used.

Communication information is obtained from OpenTracing:  the detailed information of messages transferred between services is available.

Each event in the trace contains some attributes such as ID, parent ID, protocol, host address, return code, URL, function, response time, and timestamp.

The dataset A is obtained by collecting the representatives of the events (spans) during a time interval while some sequences of representatives are 
anomalous.  Representatives are obtained by the combination of source address, destination address, function and etc.

e0 e1 e2 e3

e4e5e6e7

e8 e9 en

We can even use the duration of representatives in a separate dataset B.
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 A limited number of events can be the result of an action. Therefore few of the possible events can appear as the next event in the sequence.

In the detection phase, we use this sequential information to make a prediction and compare the predicted output against the observed value. 

 The LSTM network can be used in this part to learn the possible sequence of events and predict the next event.

 The anomaly is reported if the event observed in the next timestamp from the original sequence is different from the predicted one.

Collective anomalies
e0 e1 e2 e3

e4e5e6e7

e8 e9 en

Detection 
module
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It also enables us to detect unexpected execution paths and helps us in root cause analysis.
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Simultaneous work
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Iman.kohyarnejadfard@polymtl.ca
https://github.com/kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca
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