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How to leverage the event fields?
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Why Use the Event Fields?

The information is already available...

® __or it can be made available at a low cost.

® The more information is considered, the better will be the
modell.
® |n particular strive with more data.

1 . . . .
There are some caveats, for example, models may be subject to the curse of dimensionality.
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Which Event Field to Consider?

® |et us focus on the system calls.

® Some fields are in virtually every event:

® system call name ® process name
® timestamp ® process id (pid)
® entry/exit ® thread id (tid)

® return value
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How to Use the Event Fields?

Models take as input a vectorial representation of the event.

This representation should take into account the fields.

® The simplest representation is one-hot encoding:
® event a — {1,0,0,...,0}
® event b — {0,1,0,...,0}

Not practical...
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How to Use the Event Fields?

Encoding(x) = [sin <;> T (%)]

Event Embedding
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syscall name entry/exit return value tid pid process name
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LM Objective

® Let us consider the task of Language Modelling (LM).

Predict the next event based on the previous ones.

® Do not require labels.

Allow computing the likelihood of a sequence.

® Sequences with a low probability may be anomalies.
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LM Objective - Example
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Experiments

® The model is a neural network.
® Sequences correspond to web requests.

® Inputs x; are the vectorial representation of system calls.
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Results - LSTM

Cross-entrop Accurac - .
Model Train Teyst Train ‘yl'est Training time
2-gram 315 315 0h29
3-gram 43.1 43.2 0h29
4-gram 46.7 46.8 0h31
{system call name} 0.074 0.073 97.3 97.4 0h44
Previous + {timestamp} 0.076 0.074 97.3 97.3 0h41
Previous + {entry/exit, success/failure} 0.066 0.065 97.6 97.7 0h38
Previous + {process name, pid, tid} 0.061 0.059 97.8 97.9 0h52
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Results - Transformer

Cross-entropy Accuracy . .
Model Train Test Train Test Training time
2-gram 315 315 0h29
3-gram 43.1 43.2 0h29
4-gram 46.7 46.8 0h31
{system call name} 0.100 0.084 96.6 97.1 0h53
Previous + {timestamp} 0.165 0.117 94.1 96.0 1h24
Previous + {entry/exit, success/failure} 0.097 0.081 96.7 97.2 0h50
Previous + {process name, pid, tid} 0.076 0.065 97.3 97.7 1h08

® Timestamps degrade the model... their representation is
inappropriate.
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How to leverage the huge amount of data available?
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Available Data

® Huge amount of data available, or easily obtainable.

Unlabelled and boring...

® Yet there is the data underlying structure?.

Some models benefit from learning this structure.

® How to

2 . S . .
Underlying structure may be understood as the data distribution, or the set of syntactic and semantic rules.
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MLM Objective

Language Model is one approach...

But it is directional,

o (MLM) address this limitation.

Mask some of the input and learn to predict them.

® |earn to reconstruct the data, hence its underlying structure.

Deep Learning for Anomaly Detection and Cause Identification — Quentin Fournier 13/26 — dorsal.polymtl.ca



POLYTECHNIQUE MONTREAL

MLM Objective - Example

\ Model \
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How to Use MLM

® As an unsupervised step

® |earn the structure of the data, then use the model for
another task
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How to Use MLM

@ Create an encoder which takes as input the vectorial
representation of events:

Encoder
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How to Use MLM

® Add the classifier for the Mask Language Modelling (MLM):

MLM Classifier ‘

T

Encoder
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How to Use MLM

® Train the encoder and the classifier using MLM:

event 2

T

MLM Classifier

Encoder
event 1 event 3 event 4
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How to Use MLM

® Now both the encoder and the classifier are trained on MLM:

MLM Classifier

T

Encoder
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How to Use MLM

® The classifier is removed since we only need the encoder. It is
said the encoder has been

Encoder
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How to Use MLM

® Add the classifier or the predictor for the final task:

Classifier or Predictor

Encoder
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How to Use MLM

@ Train only the classifier or decoder:

Label

T

Classifier or Predictor

Encoder

] T T T

event a eventb eventc eventz
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How to Use MLM

® Fine-tune the whole model to get the best performance:

Label

T

Classifier or Predictor

Encoder

] T T T

event a eventb eventc eventz
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Preliminary Results - Transformer

® No preliminary results for the impact of pre-training.
® Ciena is collecting labelled data.

® Early results indicate that event fields seem to have a large
impact on the pre-training.
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Future Works

Evaluate the impact of pre-training with MLM.

Better quantify the impact of event fields.

Compute the sequence likelihood to detect anomalies.

Reduce the complexity of the models used.
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Thank You
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