

## Deep Learning for Anomaly Detection and Cause Identification Quentin Fournier quentin.fournier@polymtl.ca

École Polytechnique de Montréal Laboratoire DORSAL

#### How to leverage the event fields?

#### Why Use the Event Fields?

- The information is already available...
- ...or it can be made available at a low cost.
- The more information is considered, the better will be the model<sup>1</sup>.
- In particular neural networks strive with more data.

<sup>1</sup>There are some caveats, for example, models may be subject to the curse of dimensionality.

## Which Event Field to Consider?

- Let us focus on the system calls.
- Some fields are in virtually every event:
  - system call name
  - timestamp
  - entry/exit
  - return value

- process name
- process id (pid)
- thread id (tid)

Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournier

#### How to Use the Event Fields?

- Models take as input a vectorial representation of the event.
- This representation should take into account the fields.
- The simplest representation is one-hot encoding:
  - event a ightarrow  $\{1,0,0,...,0\}$
  - event  $\texttt{b} \rightarrow \{0,1,0,...,0\}$

• Not practical... The representation must be learned.



#### How to Use the Event Fields?



### LM Objective

- Let us consider the task of Language Modelling (LM).
- Predict the next event based on the previous ones.
- Do not require labels.
- Allow computing the likelihood of a sequence.
- Sequences with a low probability may be anomalies.



#### LM Objective - Example



Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier

#### Experiments

- The model is a neural network.
- Sequences correspond to web requests.
- Inputs  $x_i$  are the vectorial representation of system calls.

#### Results - LSTM

| Model                                               | Cross-entropy |       | Accuracy |      | Testates stars |
|-----------------------------------------------------|---------------|-------|----------|------|----------------|
|                                                     | Train         | Test  | Train    | Test | training time  |
| 2-gram                                              |               |       | 31.5     | 31.5 | 0h29           |
| 3-gram                                              |               |       | 43.1     | 43.2 | 0h29           |
| 4-gram                                              |               |       | 46.7     | 46.8 | 0h31           |
| {system call name}                                  | 0.074         | 0.073 | 97.3     | 97.4 | 0h44           |
| Previous + {timestamp}                              | 0.076         | 0.074 | 97.3     | 97.3 | 0h41           |
| <pre>Previous + {entry/exit, success/failure}</pre> | 0.066         | 0.065 | 97.6     | 97.7 | 0h38           |
| Previous + {process name, pid, tid}                 | 0.061         | 0.059 | 97.8     | 97.9 | 0h52           |

#### Results - Transformer

| Model                                    | Cross-entropy |       | Accuracy |      | Training time |
|------------------------------------------|---------------|-------|----------|------|---------------|
|                                          | Train         | Test  | Train    | Test | training time |
| 2-gram                                   |               |       | 31.5     | 31.5 | 0h29          |
| 3-gram                                   |               |       | 43.1     | 43.2 | 0h29          |
| 4-gram                                   |               |       | 46.7     | 46.8 | 0h31          |
| {system call name}                       | 0.100         | 0.084 | 96.6     | 97.1 | 0h53          |
| Previous + {timestamp}                   | 0.165         | 0.117 | 94.1     | 96.0 | 1h24          |
| Previous + {entry/exit, success/failure} | 0.097         | 0.081 | 96.7     | 97.2 | 0h50          |
| Previous + {process name, pid, tid}      | 0.076         | 0.065 | 97.3     | 97.7 | 1h08          |

• Timestamps degrade the model... their representation is inappropriate.

#### How to leverage the huge amount of data available?



Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournier

#### Available Data

- Huge amount of data available, or easily obtainable.
- Unlabelled and boring...
- Yet there is the data underlying structure<sup>2</sup>.
- Some models benefit from learning this structure.
- How to learn this structure from many unlabelled examples?

 $^2$ Underlying structure may be understood as the data distribution, or the set of syntactic and semantic rules.

#### MLM Objective

- Language Model is one approach...
- But it is directional, only the previous events are considered.
- Masked Language Model (MLM) address this limitation.
- Mask some of the input and learn to predict them.
- Learn to reconstruct the data, hence its underlying structure.

#### MLM Objective - Example





Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier

- As an unsupervised pre-training step
- Learn the structure of the data, then use the model for another task



Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier

Create an encoder which takes as input the vectorial representation of events:

Encoder

Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier

#### 2 Add the classifier for the Mask Language Modelling (MLM):





**3** Train the encoder and the classifier using MLM:



Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournier

A Now both the encoder and the classifier are trained on MLM:





Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournier

**6** The classifier is removed since we only need the encoder. It is said the encoder has been pre-trained.

Encoder

#### 6 Add the classifier or the predictor for the final task:





**7** Train only the classifier or decoder:



Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier

8 Fine-tune the whole model to get the best performance:



Deep Learning for Anomaly Detection and Cause Identification – Quentin Fournier

## Preliminary Results - Transformer

- No preliminary results for the impact of pre-training.
- Ciena is collecting labelled data.
- Early results indicate that event fields seem to have a large impact on the pre-training.

#### Future Works

- Evaluate the impact of pre-training with MLM.
- Better quantify the impact of event fields.
- Compute the sequence likelihood to detect anomalies.
- Reduce the complexity of the models used.

# Thank You



Deep Learning for Anomaly Detection and Cause Identification - Quentin Fournier