
What’s new at EfficiOS ?

Polytechnique Montréal – May 2018Polytechnique Montréal – May 2018

2

OutlineOutline

● Kernel Contributions,
● LTTng Scope,
● LTTng 2.11,
● Babeltrace.

3

Kernel ContributionsKernel Contributions

● Memory Barriers (membarrier(2)),
● Restartable sequence (rseq),
● CPU operation vectors (cpu_opv).

4

membarriermembarrier

● Membarrier is a system call issuing a memory barrier on a set of
threads,

● New commands:
– Private expedited (4.14),

– Shared renamed to Global (4.16),
– Global expedited (4.16),

– Private expedited sync core for JIT reclaim (4.16).

● Provide LTTng-UST ring buffer and liburcu read-side performance
enhancement.

5

Restartable SequencesRestartable Sequences

● Restartable Sequences (rseq) is a newly proposed system call which accelerates
user-space operations on per-cpu data, e.g.:
– LTTng-UST ring buffer,

– Liburcu per-cpu flavor (for multi-process RCU over shared memory),

– Facebook’s jemalloc,

– Performance Monitoring Unit counters on arm64,

● A TLS area is registered for each thread, and then shared between kernel and
user-space. It allows restarting user-space assembly instruction sequences if
preempted, migrated, or interrupted by signal delivery. It also provides a copy of
the current CPU number which is always kept up to date by the kernel, readable
from user-space.

6

Restartable Sequences LimitationsRestartable Sequences Limitations

● Limitations:
– Debugger instruction and line-level single-stepping triggers restarts (infinite

retry loops),
● Can be mitigated with __rseq_table section if used by future debugger implementation

to skip rseq critical sections,

– Unable to target a specific CPU: executes on the current CPU,

– Requires application to provide a fallback using separate data, e.g.:
● Split-counters,
● memory allocation from a memory pool based on another synchronization mechanism,
● use a system call to read performance counters.

7

CPU operation vectorsCPU operation vectors

● CPU operation vector (cpu_opv) is a small interpreter in the kernel,
● Get references to pages backing all memory targeted by operations first, taking page

faults if needed,
● Migrates current thread to specific CPU if needed,
● Disables preemption, and executes the sequences of operations “atomically” with respect

to scheduler preemption and migration,
● Handles CPU hotplug (off-line CPU) by disabling CPU hotplug temporarily (read-side

hotplug lock), and using a mutex providing mutual exclusion,
● Can be used as slow-path fallback taking care of rseq fast-path limitations,
● rseq is planned to be proposed independendly first (4.18 ?) and then cpu_opv may be

proposed in the future to fulfill the missing requirements.

8

LTTng ScopeLTTng Scope

● First official release (LTTng Scope 0.3),
● Base feature set:

– Detailed event record list,

– Thread and CPU timeline views,

– Project-wide event highlighting,

– Easy installer bundle.

9

LTTng ScopeLTTng Scope

10

To be expected for LTTng ScopeTo be expected for LTTng Scope

● LTTng Scope 0.4:
– Multi-trace projects,

– Project state persistence.

● LTTng Scope 0.5:
– Callstack view for LTTng-UST traces,

– Adding and removing widgets in the main view.

11

LTTng 2.11LTTng 2.11

● New features:
– Session rotation,

– Dynamic instrumentation,

– Filtering on array and sequence integers in LTTng-UST and LTTng-
modules.

12

LTTng 2.11 – Session RotationLTTng 2.11 – Session Rotation

● Allow processing of portion of the trace without stopping tracing,
● Split trace in self contained-traces on the fly,
● Allows for pipelining and/or sharding of analyses,
● Encryption, compression, cleanup of old chunks, integration

with external message bus tools.

13

LTTng 2.11 – Dynamic instrumentationLTTng 2.11 – Dynamic instrumentation

● Adding tracepoints without having to recompile or restart a process,
● Using the uprobe interface,
● Tracing userspace using the kernel tracer,
● Supported instrumentation point types:

– ELF symbols,

– SystemTap/SDT probe points (without semaphore).

lttng enable-event --kernel
--userspace-probe=elf:/path/to/binary:symbol
 event_name

14

LTTng 2.11 – Dynamic instrumentationLTTng 2.11 – Dynamic instrumentation

● Limitations:
– Slower than LTTng-UST, because of context-switches to the kernel,

– No tracepoint payload recorded at the moment.

15

Filtering on array and sequence of integersFiltering on array and sequence of integers

● Filter out event based on the content of arrays and sequence

[14:32:57.03] host lttng_ust_prov:event : { _field_length = 4, field = [[0]

= 121, [1] = 55, [2] = 23, [3] = 42] }

● Define filter using indexes in sequence:

lttng enable-event --userspace lttng_ust_prov:event

--filter=’field[0]<100 && field[3]==42‘

16

Babeltrace 2.0Babeltrace 2.0

● Flexible trace processing framework:
– Graph-structured processing,

– Customizable components,

– API for out-of-tree components.

● Targeting comparable performance with Babeltrace 1.x before
freezing APIs.

17

Babeltrace - PerformanceBabeltrace - Performance

● Reducing object allocation:
– Object pooling.

● Removing precondition checks:
– Introducing “Developer Mode”.

18

Thank you!Thank you!

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

