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Anomaly

Introduction          Methodology          Demo         Conclusion

● Anomaly is something different which deviates from the common rule.
● Anomalies are patterns in data that do not conform to a well defined notion of normal behavior.

The figure retrieved from: https://pngtree.com
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Anomaly Detection

Introduction          Methodology          Demo         Conclusion

● Anomaly detection refers to the problem of finding patterns in data that do not conform to expected 
behavior.

● Many anomaly detection techniques have been developed for various application domains.
● Anomalies in data translate to significant, and often critical, actionable information in a wide variety of 

application domains.

The figure retrieved from: https://pngtree.com
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Anomaly Detection
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Introduction          Methodology          Demo         Conclusion

➔ The data has a normal region: N

➔ Most observations lie in this region. 

➔ Points that are sufficiently far away from this region, for example o1 and o2 are anomalies.
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Motivation
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Online Anomaly Detection 
in system

Discriminate between 
normal and anomalous 
processes

Develop an automatic anomaly 
detection framework

Develop a 
performance anomaly
 prediction framework

Improve the accuracy 
of detection methods
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Challenges
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01 Defining a normal region that encompasses every possible normal behavior is very 
difficult.

Normal behavior keeps evolving and the current notion of normal behavior might 
not be sufficiently representative in the future.

The exact notion of an anomaly is different for different application domains.

Availability of labeled data for training/validation of models used by anomaly 
detection techniques is a major issue.
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Why system calls?
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System Call is a program signal for requesting a service from the system kernel.

System calls can represent low-level interactions between a process and the kernel in the system.

system call traces generated by program executions are stable and consistent during program’s normal 
activities so that they can be used to distinguish the abnormal operations from normal activities. 

System call streams are enormous, and suitable to use in machine learning. A single process can 
produce thousands system calls per second. 
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We can use three different representations of system calls: n-grams of system call names, 
histograms of system call names, and individual system calls with associated parameters.

System call sequences can provide both momentary and temporal dynamics of process behavior. 
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Tracing Feature Extraction Data Set Creation

LTTng tracing

Read Trace Data 
(Extract streams of  

system calls)

Machine Learning

Anomaly Detection 
(Kmeans, SVM)

Apply sliding window  

Features: 
Frequency of system calls + 

duration of system calls

Preprocessing

Reduce Sparsity

Normalization

Feature Selection

Anomaly Prediction 
(LSTM)

Preprocessing

The methodology is based on collecting streams of system calls produced by all or selected processes on the system, and sending 
them to a monitoring part.

Machine learning algorithms are used to identify changes in process behavior.

The methodology uses a sequence of system call count vectors  or sequence of system call duration vectors as the data format 
which can handle large and varying volumes of data.
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Our Use Case
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The open source MySQL synthetic benchmarks tool, Sysbench, with oltp test in complex mode.

A virtual machine with different workloads, such as:
I. (CPU problem) Setting the VM’s CPU cap to too low (e.g., 1 CPU core, while running 8 threads of MySQL)
II. (Memory problem) Setting the memory cap to too low (e.g., 256 MB memory, while the MySQL table is of size 6 GB)

Sliding window = 10k system calls

9000 normal samples vs 9000 anomalous ones (including Memory and CPU problem)
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The benchmarking tool is run on virtual machines with different configurations and
 varying load on resources; LTTng is used to keep our multiple tracing data.

Trace compass is used to read tracing data, create tables of system calls and 
construct the initial vectors to use in machine learning part.
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Indexes instead of names 
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Read Trace
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 Row 1 1

Row 1

 Row 1 1

Row 2

 Row 1 1

Row 0

Row 3

Row n-2

Row n-1

Row   n-3

Row n

System Call Name

poll 7 1,54178425914609E+018 591390041

recvfrom 45 1,54178425977145E+018 175726

recvfrom 45 1,54178425976938E+018 2262238

sync_file_range 277 1,54178425977153E+018 126748

recvfrom 45 1,5417842597714E+018 534946

poll 7 1,54178425977154E+018 459203

recvfrom 45 1,54178425977145E+018 605839

recvfrom 45 1,54178425977155E+018 569994

index Time stamp Duration
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Windowing
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Data Set Creation
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MACHINE
L E A R N I N G
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Preprocessing
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Scaling
It selects the same number of samples from each class without considering any order in vectors.

Normalization
The goal of normalization is to change the values of numeric columns in the dataset to use a 
common scale, without distorting differences in the ranges of values or losing information.

Sparsity
Sparse matrices are common in machine learning. They occur in some data collection processes or 
applying certain data transformation techniques like one-hot encoding or count vectorizing.

Fisher score
It selects each feature  independently according to their scores under the Fisher criterion, which 
leads to a suboptimal subset of features.
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Learning part
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Reduce Sparsity

Normalization

Feature Selection

Raw Data

KMeans

SVM
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Results
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Fisher’s score for systemcall #50
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Technologies used in this framework
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Angular

sails



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard

Framework Architecture
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Future Directions
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01
Test the methodology on other use 
cases to find stable and accurate 
strategy.

02
Utilize other metrics and analysis 
such as critical path data extraction 
to improve the performance.

03

Apply the methodology for online 
anomaly detection

04
Employ the extracted features in developing 
the anomaly prediction framework.



POLYTECHNIQUE MONTREAL – Iman Kohyarnejadfard 25

Iman.kohyarnejadfard@polymtl.ca
https://github.com/Kohyar

Questions?

Thank you for your attention!

mailto:Iman.kohyarnejadfard@polymtl.ca
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