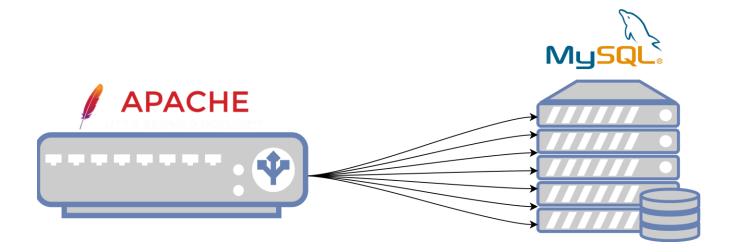
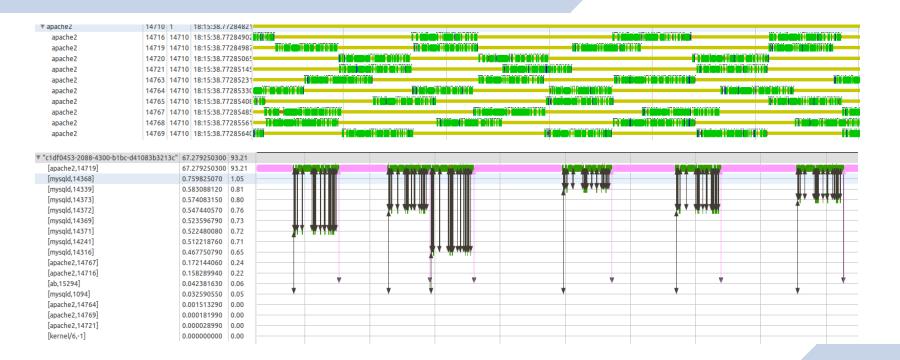
Representation learning to improve trace analysis


Current work

Jointly with Naser Ezzati


Goal

- Can we cluster executions/requests based on their behavior?
- Can we extract high level information (response time, ressource usage, etc.) from the clusters?
 - o Can we find similar requests wihtin a cluster?
 - Can we find different requests between clusters?

Experimental setup

Request critical path

Extracting critical path states

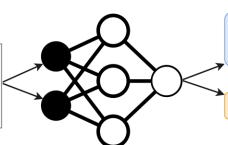
Critical path states sequences

$$ap_R \rightarrow ap_R \rightarrow my_U \rightarrow my_R \rightarrow ap_P \rightarrow ap_R \rightarrow ap_R \rightarrow \dots$$
 time: 10ms

$$ap_R \ \rightarrow \ ap_R \ \rightarrow \ my_U \ \rightarrow \ my_R \ \rightarrow \ ap_P \ \rightarrow \ ap_R \ \rightarrow \ my-R \ \rightarrow \dots .$$

time: 14ms

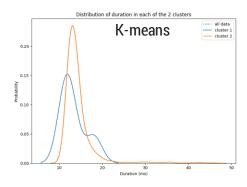
$$ap_R \ \rightarrow \ my_U \ \rightarrow \ my_R \ \rightarrow \ ap_P \ \rightarrow \ ap_T \ \rightarrow \ ap_P \ \rightarrow \ ap-R \ \rightarrow \dots$$

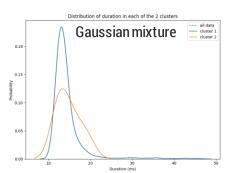

time: 36ms

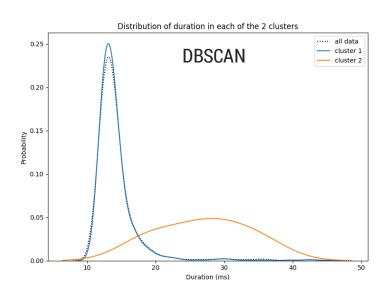
. .

xx_R	xx running
xx T	xx timer
xx P	xx preemption
xx N	xx network
xx D	xx disk
xx U	xx unknown

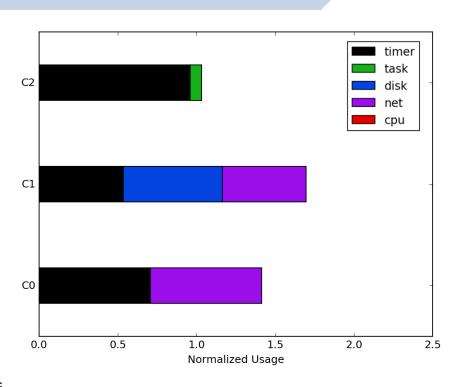
Clustering


Clusters


 $ap_R \rightarrow my_U \rightarrow my_R \rightarrow ap_P \rightarrow ap_T \rightarrow ap_P \rightarrow \dots$


K-means Gaussian mixture DBSCAN

...


Analysis: time

Analysis: ressources

Ngrams

Manual clustering based on duration

Top-10 ngram that differ most between each class					
ngram average count	slow	fast	diff		
ap_R ap_R ap_P ap_R ap_R ap_P ap_R ap_R ap_P ap_R ap_R ap_R ap_P ap_R ap_R ap_R ap_P ap_R my_R ap_P ap_R my_R ap_R my_R ap_P ap_R ap_R ap_R my_R ap_P ap_R ap_R ap_R my_R ap_P ap_R ap_R ap_R my_R ap_P ap_R ap_R my_R ap_P ap_R ap_R ap_R my_R ap_P	2.41 2.41 2.87 3.88 3.88 17.3 18.7 20.1 20.1 19.9	0.0525 0.0525 0.07 0.0825 0.0825 20.8 21.7 22.8 22.8 22.6	2.36 2.36 2.8 3.79 3.79 -3.45 -2.67 -2.67 -2.67 -2.66		

Ngrams

Manual clustering based on duration

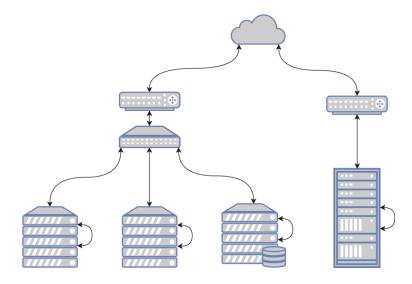
Ngram that appear only in one class				
ngram average count	ı	slow	Ī	fast
ap_R ap_R my_R my_R ap_P ap_R my_R my_R ap_P ap_R my_R my_R ap_P ap_R my_R my_R ap_P my_R my_R ap_P ap_R		0 0 0 0		0.0075 0.0075 0.0075 0.0075 0.0075

. . .

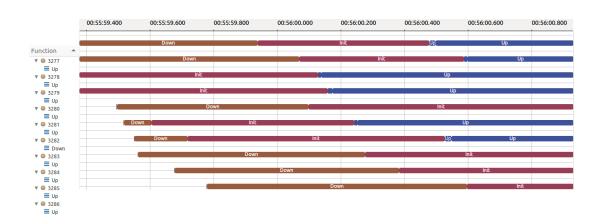
ap_R ap_R ap_P ap_R ap_P	0.255	0
ap_P ap_R ap_P ap_R ap_P	0.5275	0
ap_R ap_P ap_R ap_P	0.795	0
ap_R ap_P ap_R ap_P ap_R	0.795	0
ap_R ap_P ap_R ap_P	1.2225	0

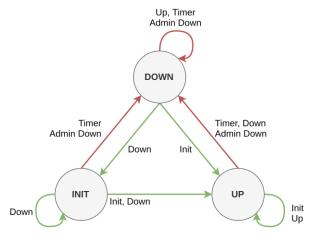
Current work

What's next?


- Try different clustering methods
- Extends clusters analysis
- Add call stack data

Future work


Data source


- Collaboration with Ciena
- Many protocols between multiple nodes
- Trace the state transition of each protocol
- Easy to simulate executions
- Easy to inject faults

Bidirectional Forwarding Detection (BFD)

BFD is a network protocol used to detect faults between two systems connected by a link.

Long term objectives

- Generate traces with different types of injected faults as labeld data
- Predict if a network of nodes is likely to end up faulty
- When a problem is detected, predict the fault type
- Identify the early clues of fault (≈root cause analysis)

(RFC5880) A diagnostic code specifying the local system's reason for the last change in session state. Values are:

- 0 -- No Diagnostic
- 1 -- Control Detection Time Expired
- 2 -- Echo Function Failed
- 3 -- Neighbor Signaled Session Down
- 4 -- Forwarding Plane Reset
- 5 -- Path Down
- 6 -- Concatenated Path Down
- 7 -- Administratively Down
- 8 -- Reverse Concatenated Path Down
- 9-31 -- Reserved for future use

Thank you for your attention